Spaceflight Now Home



Spaceflight Now +



Subscribe to Spaceflight Now Plus for access to our extensive video collections!
How do I sign up?
Video archive

Discovery rolls out

Discovery travels from the Vehicle Assembly Building to pad 39A in preparation for the STS-124 mission.

 Play

STS-124: The programs

In advance of shuttle Discovery's STS-124 mission to the station, managers from both programs discuss the flight.

 Play

STS-124: The mission

A detailed preview of Discovery's mission to deliver Japan's science laboratory Kibo to the station is provided in this briefing.

 Part 1 | Part 2

STS-124: Spacewalks

Three spacewalks are planned during Discovery's STS-124 assembly mission to the station.

 Play

STS-124: The Crew

The Discovery astronauts, led by commander Mark Kelly, meet the press in the traditional pre-flight news conference.

 Play

Discovery to VAB

For its STS-124 mission, shuttle Discovery was transferred from its hangar to the Vehicle Assembly Building for attachment to a fuel tank and twin solid rocket boosters.

 Transfer | Hoist

Complex 40 toppling

The Complex 40 mobile service tower at Cape Canaveral's former Titan rocket launch pad was toppled using explosives on April 27.

 Play

Become a subscriber
More video



Iron 'snow' helps maintain Mercury's magnetic field
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN NEWS RELEASE
Posted: May 7, 2008

CHAMPAIGN, Ill. - New scientific evidence suggests that deep inside the planet Mercury, iron "snow" forms and falls toward the center of the planet, much like snowflakes form in Earth's atmosphere and fall to the ground.

The movement of this iron snow could be responsible for Mercury's mysterious magnetic field, say researchers from the University of Illinois and Case Western Reserve University. In a paper published in the April issue of the journal Geophysical Research Letters, the scientists describe laboratory measurements and models that mimic conditions believed to exist within Mercury's core.

"Mercury's snowing core opens up new scenarios where convection may originate and generate global magnetic fields," said U. of I. geology professor Jie "Jackie" Li. "Our findings have direct implications for understanding the nature and evolution of Mercury's core, and those of other planets and moons."

Mercury is the innermost planet in our solar system and, other than Earth, the only terrestrial planet that possesses a global magnetic field. Discovered in the 1970s by NASA's Mariner 10 spacecraft, Mercury's magnetic field is about 100 times weaker than Earth's. Most models cannot account for such a weak magnetic field.

Made mostly of iron, Mercury's core is also thought to contain sulfur, which lowers the melting point of iron and plays an important role in producing the planet's magnetic field.

"Recent Earth-based radar measurements of Mercury's rotation revealed a slight rocking motion that implied the planet's core is at least partially molten," said Illinois graduate student Bin Chen, the paper's lead author. "But, in the absence of seismological data from the planet, we know very little about its core."

To better understand the physical state of Mercury's core, the researchers used a multi-anvil apparatus to study the melting behavior of an iron-sulfur mixture at high pressures and high temperatures.

In each experiment, an iron-sulfur sample was compressed to a specific pressure and heated to a specific temperature. The sample was then quenched, cut in two, and analyzed with a scanning electron microscope and an electron probe microanalyzer.

"Rapid quenching preserves the sample's texture, which reveals the separation of the solid and liquid phases, and the sulfur content in each phase," Chen said. "Based on our experimental results, we can infer what is going on in Mercury's core."

As the molten, iron-sulfur mixture in the outer core slowly cools, iron atoms condense into cubic "flakes" that fall toward the planet's center, Chen said. As the iron snow sinks and the lighter, sulfur-rich liquid rises, convection currents are created that power the dynamo and produce the planet's weak magnetic field.

Mercury's core is most likely precipitating iron snow in two distinct zones, the researchers report. This double-snow state may be unique among the terrestrial planets and terrestrial-like moons in our solar system.

"Our findings provide a new context into which forthcoming observational data from NASA's MESSENGER spacecraft can be placed," Li said. "We can now connect the physical state of our innermost planet with the formation and evolution of terrestrial planets in general."

With Li and Chen, Case Western Reserve University planetary geodynamics professor Steven A. Hauck II was a co-author of the paper.

The work was funded by the National Science Foundation.