Spaceflight Now Home



Spaceflight Now +



Premium video content for our Spaceflight Now Plus subscribers.

Atlantis on the pad
Space shuttle Atlantis is delivered to Kennedy Space Center's launch pad 39B on August 2 to begin final preparations for blastoff on the STS-115 mission to resume construction of the International Space Station.

 PLAY

Atlantis rollout begins
Just after 1 a.m. local time August 2, the crawler-transporter began the slow move out of the Vehicle Assembly Building carrying space shuttle Atlantis toward the launch pad.

 PLAY

ISS EVA preview
Astronauts Jeff Williams and Thomas Reiter will conduct a U.S.-based spacewalk outside the International Space Station on August 3. To preview the EVA and the tasks to be accomplished during the excursion, station managers held this press conference from Johnson Space Center in Houston.

 Dial-up | Broadband

STS-34: Galileo launch
The long voyage of exploration to Jupiter and its many moons by the Galileo spacecraft began on October 18, 1989 with launch from Kennedy Space Center aboard the space shuttle Atlantis. The crew of mission STS-34 tell the story of their flight to dispatch the probe -- fitted with an Inertial Upper Stage rocket motor -- during this post-flight presentation film.

 Small | Medium | Large

Atlantis on the move
Space shuttle Atlantis is transported to the cavernous Vehicle Assembly Building where the ship will be mated to the external fuel tank and twin solid rocket boosters for a late-August liftoff.

 PLAY | TIME-LAPSE

Discovery ride along!
A camera was mounted in the front of space shuttle Discovery's flight deck looking back at the astronauts during launch. This video shows the final minutes of the countdown and the ride to space with the live launch audio included. The movie shows what it would be like to launch on the shuttle with the STS-121 crew.

 PLAY

Shuttle from the air
A high-altitude WB-57 aircraft flying north of Discovery's launch trajectory captures this incredible aerial footage of the space shuttle's ascent from liftoff through solid rocket booster separation.

 PLAY

Launch experience
This is the full launch experience! The movie begins with the final readiness polls of the launch team. Countdown clocks then resume ticking from the T-minus 9 minute mark, smoothly proceeding to ignition at 2:38 p.m. Discovery rockets into orbit, as seen by ground tracker and a video camera mounted on the external tank. About 9 minutes after liftoff, the engines shut down and the tank is jettisoned as the shuttle arrives in space.

 PLAY

Delta 2 launches MiTEx
MiTEx -- an experimental U.S. military project to test whether the advanced technologies embedded in two miniature satellites and a new upper stage kick motor can operate through the rigors of spaceflight -- is launched from Cape Canaveral aboard a Boeing Delta 2 rocket.

 Full coverage

Become a subscriber
More video



Research says pre-life molecules present in comets
UNIVERISTY OF MICHIGAN NEWS RELEASE
Posted: August 4, 2006

Evidence of atomic nitrogen in interstellar gas clouds suggests that pre-life molecules may be present in comets, a discovery that gives a clue about the early conditions that gave rise to life, according to researchers from the University of Michigan and the Harvard-Smithsonian Center for Astrophysics.

The finding also substantially changes the understanding of chemistry in space.

The question of why molecular nitrogen hasn't been detected in comets and meteorites has puzzled scientists for years. Because comets are born in the cold, dark, outer reaches of the solar system they are believed to be the least chemically altered during the formation of the Sun and its planets.

Studies of comets are thought to provide a "fossil" record of the conditions that existed within the gas cloud that collapsed to form the solar system a little more than 4.6 billion years ago. In this cloud, since nitrogen was thought to be in molecular form, and it follows that comets should contain molecular nitrogen as well.

But the reason it isn't there is because it isn't present in the gas clouds whose microscopic solid particles eventually form comets, said Sebastien Maret, research fellow in astronomy at the University of Michigan, and Edwin Bergin, a professor of astronomy at the University of Michigan. Those clouds contain mostly atomic nitrogen, not molecular nitrogen, as previously thought.

Maret, Bergin, and collaborators from Harvard-Smithsonian Center for Astrophysics will publish their findings in the July 27 issue of the journal Nature.

The nitrogen bearing molecules in comets that crashed into Earth millions of years ago may have provided a sort of "pre-biotic jump start" to form the complex molecules that eventually led to life here, Bergin said.

"A lot of complex and simple biotic molecules have nitrogen and it's much easier to make complex molecules from atomic nitrogen," Bergin said. "All DNA bases have atomic nitrogen in them, amino acids also have atomic nitrogen in them. By that statement what we're saying is if you have nitrogen in its simplest form, the atomic form, it's much more reactive and can more easily form complex prebiotic organics in space". These complex organics were incorporated into comets and were provided to the Earth.

"What we're seeing in space is telling us something about how you make molecules that led to us," Bergin said.

Also of importance is the fact that odd anomalies in isotopic values in meteorites can also be explained if the nitrogen is not molecular, Bergin said.