Spaceflight Now Home

Spaceflight Now +

Premium video content for our Spaceflight Now Plus subscribers.

Historic spacewalk
This history flashback remembers the first spacewalk by an American astronaut as Ed White leaves the Gemini 4 spacecraft for an EVA on June 3, 1965. (5min 51sec file)
 Play video

Cassini preview
The Cassini spacecraft's arrival at Saturn is previewed in this detailed news conference from NASA Headquarters on June 3. (50min 01sec file)
 Play video

Saturn arrival explained
Cassini's make-or-break engine firing to enter orbit around Saturn is explained with graphics and animation. Expert narration is provided by Cassini program manager Robert Mitchell. (3min 33sec file)
 Play video

Cassini mission science
The scientific objectives of the Cassini mission to study the planet Saturn, its rings and moons are explained by Charles Elachi, director of the Jet Propulsion Laboratory. (4min 54sec file)
 Play video

Huygens mission science
After entering orbit around Saturn, the Cassini spacecraft will launch the European Huygens probe to make a parachute landing on the surface of the moon Titan. The scientific objectives of Huygens are explained by probe project manager Jean-Pierre Lebreton. (3min 14sec file)
 Play video

Saturn's moon Titan
Learn more about Saturn's moon Titan, which is believed to harbor a vast ocean, in this narrated movie. (4min 01sec file)
 Play video

Relive Cassini's launch
An Air Force Titan 4B rocket launches NASA's Cassini spacecraft at 4:43 a.m. October 15, 1997 from Cape Canaveral, Florida. (5min 15sec file)
 Play video

Exploring the hills
"A brand new mission" is beginning for the Mars Exploration Rover Spirit as it nears the Columbia Hills as described in this presentation by science team member James Rice. (5min 57sec file)
 Play video

Exploring Endurance
New pictures from the Mars rover Opportunity as it drives around the rim of Endurance Crater are presented with narration by science team member Wendy Calvin. (5min 25sec file)
 Play video

Mars rover update
Mission officials and scientists discuss the condition and progress of Mars rovers Spirit and Opportunity plus the latest science news in this briefing from June 2. (40min 55sec file)
 Play video

Options to save Hubble
NASA Administrator Sean O'Keefe announces plans to examine a robotic servicing mission to the Hubble Space Telescope. (33min 51sec file)
 Play video

Become a subscriber
More video


Sign up for our NewsAlert service and have the latest news in astronomy and space e-mailed direct to your desktop.

Enter your e-mail address:

Privacy note: your e-mail address will not be used for any other purpose.

Hubble image reveals details in heart of the Trifid Nebula
Posted: June 5, 2004

Three huge intersecting dark lanes of interstellar dust make the Trifid Nebula one of the most recognizable and striking star birth regions in the night sky. The dust, silhouetted against glowing gas and illuminated by starlight, cradles the bright stars at the heart of the Trifid Nebula. This nebula, also known as Messier 20 and NGC 6514, lies within our own Milky Way Galaxy about 9,000 light-years (2,700 parsecs) from Earth, in the constellation Sagittarius.

Credit: NASA, ESA, and The Hubble Heritage Team (AURA/STScI)
Download larger image version here

This new image from the Hubble Space Telescope offers a close-up view of the center of the Trifid Nebula, near the intersection of the dust bands, where a group of recently formed, massive, bright stars is easily visible. These stars, which astronomers classify as belonging to the hottest and bluest types of stars called type "O," are releasing a flood of ultraviolet radiation that dramatically influences the structure and evolution of the surrounding nebula. Many astronomers studying nebulae like the Trifid are focusing their research on the ways that waves of star formation move through such regions.

The group of bright O-type stars at the center of the Trifid illuminates a dense pillar of gas and dust, seen to the right of the center of the image, producing a bright rim on the side facing the stars. At the upper left tip of this pillar, there is a complex filamentary structure. This wispy structure has a bluish color because it is made up of glowing oxygen gas that is evaporating into space.

Star formation is no longer occurring in the immediate vicinity of the conspicuous group of bright O-type stars, because their intense radiation has blown away the gas and dust from which stars are made. However, not far away there are signs of interstellar material collapsing under its own gravity, leading to ongoing star formation. One such example is a very young star that is still surrounded by a ring of gas and dust left over from the star's formation. These circumstellar rings, called protoplanetary disks, or "proplyds" for short, are believed to be the locations where planetary systems are formed. A proplyd in the Trifid Nebula is visible near the lower right of the main Hubble image. An image enlargement of the proplyd is shown in the lower left box, where its elongated shape can be seen.

In the box at upper right, a jet of material is seen being ejected from a very young, low-mass star. The jet, extending to the lower right of the box, protrudes from the head of a dense pillar and extends three-quarters of a light-year out into the surrounding thin gas. The jet's source is a very young stellar object that lies buried within the pillar. Previous Hubble images of the Trifid Nebula, taken in 1997, show very small, but noticeable changes in the knotty material being ejected from this jet. Accompanying the jet is a nearby stalk that points directly toward the central stars in the Trifid Nebula. This finger-like stalk is similar to the large pillars of gas in the well-known Eagle Nebula, also imaged by Hubble.

The Hubble image of the Trifid Nebula has given astronomers insight into the nature of the interaction of gaseous, dusty and stellar material in an area where dust, gas clouds, and new and old stars coexist. The science team, composed of Farhad Yusef-Zadeh (Northwestern U.), John Biretta (STScI), Bob O'Dell (Vanderbilt U.), and Mark Wardle (Macquarie U.), took exposures in filters that transmit light emitted by oxygen, hydrogen, and sulfur ions. The images were taken with the Wide Field Planetary Camera 2 onboard Hubble in mid-summer 2001 and 2002. This image was produced by the Hubble Heritage Team.