|
||||
World's largest telescope creates a virtual star KECK OBSERVATORY NEWS RELEASE Posted: January 5, 2002 The W. M. Keck Observatory, home to the world's two largest telescopes, and the Lawrence Livermore National Laboratory (LLNL) have created a "virtual" guide star that will greatly increase the ability of the Keck II telescope using adaptive optics to resolve fine details of astronomical objects. Installed in 1999, the Keck adaptive optics system has enabled astronomers to minimize the blurring effects of the Earth's atmosphere, producing images with unsurpassed detail and resolution. The adaptive optics system uses light from a relatively bright star to measure the atmospheric distortions and to correct for them, but only about one percent of the sky contains stars sufficiently bright to be of use. The new virtual guide star will enable Keck astronomers to study nearly the entire sky with the high resolution of adaptive optics.
Adaptive optics refers to the ability to compensate or adapt to turbulence in the Earth's atmosphere, removing the blurring of starlight. Adaptive optics systems measure the distortions of the light from a star and then remove the distortions by bouncing the light off a deformable mirror that corrects the image several hundred times per second. With the Keck adaptive optics system, astronomers are obtaining infrared images with four times better resolution than those produced by the Hubble Space Telescope, which orbits high above the Earth's atmosphere. Many significant discoveries have already been attributed to Keck adaptive optics, and the Keck laser guide star system will lead to many more.
The Keck virtual guide star system consists of a dye laser that is used to produce light with the wavelength of the atomic sodium resonance line at 589 nm. The 20-watt output of the dye laser is projected out of a 20-inch (50 cm) lens attached to the side of the 10-meter Keck II telescope. "We have seen lasers develop into powerful tools in fields ranging from medicine, to laser printers to compact disc players. Our new virtual guide star marks the start of a new era, when we'll see lasers contributing to astronomy as well," said Claire Max of LLNL, principal investigator for the Keck laser project. The main components of the Keck adaptive optics system are a wavefront sensor camera, a fast control computer and a deformable mirror. The wavefront sensor camera measures distortions due to atmospheric turbulence using light from the guide star. A control computer computes the wavefront distortion up to 670 times a second and sends commands to the deformable mirror. The deformable mirror, about six inches (15 cm) in diameter, is made out of a thin sheet of reflective glass controlled by 349 actuators that can adjust the shape of the mirror by several microns, a distance large enough to correct for atmospheric distortions. |
|
||||||