Spaceflight Now Home




Mission Reports




For 11 years, Spaceflight Now has been providing unrivaled coverage of U.S. space launches. Comprehensive reports and voluminous amounts of video are available in our archives.
Space Shuttle
Atlas | Delta | Pegasus
Minotaur | Taurus | Falcon
Titan



NewsAlert



Sign up for our NewsAlert service and have the latest space news e-mailed direct to your desktop.

Enter your e-mail address:

Privacy note: your e-mail address will not be used for any other purpose.



Advertisement






Space Books







Mars Science Laboratory begins cruise to red planet
BY WILLIAM HARWOOD
STORY WRITTEN FOR CBS NEWS "SPACE PLACE" & USED WITH PERMISSION
Posted: November 26, 2011


Bookmark and Share

KENNEDY SPACE CENTER, FL--A towering Atlas 5 rocket flashed to life and vaulted into space Saturday, putting on a spectacular weekend sky show as it boosted NASA's $2.5 billion Mars Science Laboratory rover on an eight-and-a-half-month 352-million-mile voyage to the red planet.


Credit: Justin Ray/Spaceflight Now
See more images on our Facebook page

 
Equipped with a nuclear power pack, a robot arm and a suite of sophisticated instruments, the mobile laboratory, dubbed Curiosity in a student naming contest, is expected to spend at least two years looking for organic compounds and signs of past or present habitability in the layered terrain at the heart of a 100-mile-wide crater.

It is the most complex and scientifically ambitious Mars mission yet attempted, one that promises to revolutionize humanity's understanding of martian history and whether the planet ever had -- or still has -- the raw materials and an environment hospitable to the evolution of life.

The Curiosity rover is "really a rover on steroids," Colleen Hartman, a senior manager in NASA's science directorate, said before launch. "It's an order of magnitude more capable than anything we have ever launched to any planet in the solar system. It will go longer, it will discover more than we can possibly imagine."

The mission got underway on time at 10:02 a.m. EST (GMT-5) when the rover's United Launch Alliance Atlas 5 rocket roared to life and lifted away from launch complex 41 at the Cape Canaveral Air Force Station.

Equipped with four solid-fuel strap-on boosters for additional power, the 1.2-million-pound Atlas 5 blasted off with nearly 2 million pounds of thrust, majestically climbing away from its seaside pad and arcing away to the East through scattered clouds as it accelerated toward space.

Trailing a churning cloud of fiery exhaust, the strap-on boosters were jettisoned just under one minute and 55 seconds into flight and the rocket continued on its way under the power of its Russian-built RD-180 first-stage engine.

Four-and-a-half minutes after takeoff, the first stage dropped away and the hydrogen-fueled RL10 engine at the base of the Centaur second stage ignited, powering the spacecraft toward a planned 102-by-201 mile high parking orbit 11-and-a-half minutes after launch.

Telemetry from the rocket was spotty during a 20-minute coast to the Mars departure point, but the Centaur re-ignited as planned for a final eight-minute burn, accelerating the spacecraft to an Earth-escape velocity of 22,500 mph. A few moments after that, at 10:46 a.m., the Mars Science Laboratory and its solar-powered interplanetary cruise stage separated from the Centaur, completing the launch phase of the mission.

"The launch vehicle has given us a great injection into our trajectory, and we're on our way to Mars," Project Manager Peter Theisinger said in a statement. "The spacecraft is in communication, thermally stable and power positive."

During the eight-and-a-half-month cruise to Mars, engineers at the Jet Propulsion Laboratory in Pasadena, Calif., will test the rover's instruments, adjust the craft's trajectory and tweak the control software that is vital to the mission's success.

"Our first trajectory correction maneuver will be in about two weeks," Theisinger said. "We'll do instrument checkouts in the next several weeks and continue with thorough preparations for the landing on Mars and operations on the surface."

If all goes well, Curiosity will reach the red planet on Aug. 5 for a nail-biting six-minute plunge to the floor of Gale Crater.

Just before entry, the cruise stage will re-orient the spacecraft and small weights will be ejected to change the entry vehicle's center of gravity, providing the lift necessary for a guided descent.

Using an advanced heat shield to endure entry temperatures up to 3,400-degree Fahrenheit, the rover's flight computer will fire small rocket thrusters as required to fine tune the craft's fight path based on actual atmospheric conditions.

Four minutes and 15 seconds after entry, at a velocity of about 900 mph and an altitude of roughly 7 miles, a huge braking parachute will unfurl, slowing the probe's plunge to a more manageable 180 mph. At that point, at an altitude of just under 1 mile, the rover and its "sky crane" rocket pack will fall free of the parachute assembly for a powered descent to the surface.

For flight controllers at JPL, monitoring the computer-controlled descent, this will be the moment of truth.

Too large to use airbags like those that cushioned NASA's Pathfinder, Spirit and Opportunity rovers, Curiosity will rely instead on landing rockets positioned above the rover, avoiding the challenge of coming up with a reliable way to get a one-ton vehicle off of an elevated, possibly tilted lander.

Using a high-precision radar altimeter, sophisticated attitude sensors and complex software, Curiosity's radiation-hardened computer will control the dual rockets on each corner of the sky crane to achieve a steady 1.7 mph vertical descent rate.

Just before touchdown, the rover will be lowered from the hovering sky crane on a long tether, gently setting down on its six 20-inch-wide wheels. At that point, the bridle will be cut, the sky crane will fly away to a crash landing and flight controllers will begin checking out and activating Curiosity.

Thanks to the sky crane and the guided entry, mission planners were able to select the most scientifically interesting target -- Gale Crater -- from a list of carefully considered candidates.

Starting on the floor of the vast crater and then slowly ascending the central peak through canyons and ravines visible in orbital photography, "we're basically reading the history of Mars' environmental evolution," said MSL project scientist John Grotzinger.

"We start at the bottom, where ... the clays are, we go up farther, there are the sulfates, and then we go to the top of the mound and we get rocks that we thing were formed ... in the drier, more recent phase of Mars," he said.

Climbing the central peak with its exposed layers will be "analogous to what you would see in the Grand Canyon," Grotzinger said. "So our rover is going to be like John Wesley Powell going down the Grand Canyon on Mars, looking at this thick stack of strata."

The mission is expected to last at least two years and possibly longer if the rover stays healthy and no major malfunctions occur.

The primary goal of the mission is to determine if Mars ever had a habitable environment at some point in its history, areas where the three necessities of life -- water, energy and carbon compounds -- existed in concert.

The first two are now well established, thanks to earlier Mars missions that showed Mars was once a much warmer, wetter world. But the search for carbon compounds is a much more challenging proposition.

"The promise of Mars Science Laboratory, assuming that all things behave nominally, is we can deliver to you a history of formerly, potentially habitable environments on Mars," Grotzinger said. "But the expectation that we're going to find organic carbon, that's the hope of Mars Science Laboratory. It's a long shot, but we're going to try."

Spaceflight Now Plus
Additional coverage for subscribers:
VIDEO: THE FULL LAUNCH EXPERIENCE PLAY | HI-DEF
VIDEO: ATLAS 5 ROCKET LAUNCHES MARS SCIENCE LAB PLAY | HI-DEF
VIDEO: ONBOARD CAMERA VIEW OF NOSE CONE JETTISON PLAY | HI-DEF
VIDEO: ONBOARD CAMERA VIEW OF THE STAGING EVENT PLAY | HI-DEF
VIDEO: ONBOARD VIEW OF ROCKET RELEASING MSL PLAY
VIDEO: LAUNCH DECLARED A SUCCESS PLAY

VIDEO: LAUNCH REPLAY: OUR VIEW OF LIFTOFF PLAY | HI-DEF
VIDEO: LAUNCH REPLAYS: VAB ROOF PLAY | HI-DEF
VIDEO: LAUNCH REPLAYS: PATRICK AFB PLAY | HI-DEF
VIDEO: LAUNCH REPLAYS: SOUTH OF THE PAD PLAY | HI-DEF
VIDEO: LAUNCH REPLAYS: THE BEACH TRACKER PLAY | HI-DEF
VIDEO: LAUNCH REPLAYS: SHUTTLE PAD CAMERA PLAY | HI-DEF
VIDEO: LAUNCH REPLAYS: SHUTTLE WATER TOWER PLAY | HI-DEF
VIDEO: LAUNCH REPLAY: TRACKER WEST OF THE PAD PLAY | HI-DEF
VIDEO: LAUNCH REPLAY: CLOSE-UP ON UMBILICALS PLAY | HI-DEF
VIDEO: LAUNCH REPLAYS: COMPLEX 41 VIF PLAY | HI-DEF
VIDEO: LAUNCH REPLAYS: THE PRESS SITE PLAY | HI-DEF

VIDEO: PRE-LAUNCH INTERVIEW WITH PROJECT MANAGER PLAY | HI-DEF
VIDEO: NARRATED PREVIEW OF ATLAS 5 ASCENT PROFILE PLAY | HI-DEF
VIDEO: ROCKET'S LAUNCH CAMPAIGN HIGHLIGHTS PLAY | HI-DEF
VIDEO: MSL'S LAUNCH CAMPAIGN HIGHLIGHTS PLAY | HI-DEF
VIDEO: SPACECRAFT CLEANROOM TOUR PLAY | HI-DEF

VIDEO: ATLAS ROCKET ROLLS OUT TO LAUNCH PAD PLAY | HI-DEF
VIDEO: TIME-LAPSE VIEWS OF ROCKET ROLLOUT PLAY | HI-DEF

VIDEO: THE PRE-LAUNCH NEWS CONFERENCE PLAY
VIDEO: CURIOSITY ROVER SCIENCE BRIEFING PLAY
VIDEO: LOOKING FOR LIFE IN THE UNIVERSE PLAY
VIDEO: WHAT WE KNOW ABOUT THE RED PLANET PLAY
VIDEO: ROBOTICS AND HUMANS TO MARS TOGETHER PLAY

VIDEO: PREVIEW OF ENTRY, DESCENT AND LANDING PLAY | HI-DEF
VIDEO: PREVIEW OF CURIOSITY ROVER EXPLORING MARS PLAY | HI-DEF
VIDEO: A FLYOVER OF THE GALE CRATER LANDING SITE PLAY | HI-DEF

VIDEO: NUCLEAR GENERATOR HOISTED TO ROVER PLAY | HI-DEF
VIDEO: MARS SCIENCE LAB MOUNTED ATOP ATLAS 5 PLAY | HI-DEF
VIDEO: MOVING MSL TO ATLAS ROCKET HANGAR PLAY | HI-DEF
VIDEO: SPACECRAFT PLACED ABOARD TRANSPORTER PLAY | HI-DEF

VIDEO: APPLYING MISSION LOGOS ON THE FAIRING PLAY | HI-DEF
VIDEO: MSL ENCAPSULATED IN ROCKET'S NOSE CONE PLAY | HI-DEF
VIDEO: FINAL LOOK AT SPACECRAFT BEFORE SHROUDING PLAY | HI-DEF

VIDEO: HEAT SHIELD INSTALLED ONTO SPACECRAFT PLAY | HI-DEF
VIDEO: BEAUTY SHOTS OF SPACECRAFT PACKED UP PLAY | HI-DEF
VIDEO: ATTACHING THE RING-LIKE CRUISE STAGE PLAY | HI-DEF
VIDEO: PARACHUTE-EQUIPPED BACKSHELL INSTALLED PLAY | HI-DEF
VIDEO: SKYCRANE AND CURIOSITY MATED TOGETHER PLAY | HI-DEF

VIDEO: TWO-HALVES OF ROCKET NOSE CONE ARRIVES PLAY | HI-DEF
VIDEO: CENTAUR UPPER STAGE HOISTED ATOP ATLAS PLAY | HI-DEF
VIDEO: FINAL SOLID ROCKET BOOSTER ATTACHED PLAY | HI-DEF
VIDEO: FIRST OF FOUR SOLID BOOSTERS MOUNTED PLAY | HI-DEF
VIDEO: FIRST STAGE ERECTED ON MOBILE LAUNCHER PLAY | HI-DEF
VIDEO: STAGES DRIVEN FROM HARBOR TO THE ASOC PLAY | HI-DEF
VIDEO: ROCKET ARRIVES ABOARD SEA-GOING VESSEL PLAY | HI-DEF

VIDEO: STOWING ROVER'S INSTRUMENTED ROBOT ARM PLAY | HI-DEF
VIDEO: DEPLOYING CURIOSITY'S SIX WHEELS ON EARTH PLAY | HI-DEF
VIDEO: MMRTG PUT BACK INTO STORAGE AT SPACEPORT PLAY | HI-DEF
VIDEO: NUCLEAR GENERATOR FIT-CHECK ON THE ROVER PLAY | HI-DEF
VIDEO: ROVER'S NUCLEAR POWER SOURCE ARRIVES PLAY | HI-DEF
VIDEO: SPIN-TESTING THE RING-LIKE CRUISE STAGE PLAY | HI-DEF

VIDEO: UNCOVERING CURIOSITY ROVER IN CLEANROOM PLAY | HI-DEF
VIDEO: UNVEILING THE ROCKET-POWERED SKYCRANE PLAY | HI-DEF
VIDEO: UNBOXING THE ROVER FROM SHIPPING CRATE PLAY | HI-DEF
VIDEO: ROVER HAULED FROM RUNWAY TO PHSF FACILITY PLAY | HI-DEF
VIDEO: MARS ROVER ARRIVES AT KENNEDY SPACE CENTER PLAY | HI-DEF

VIDEO: DESCENT WEIGHTS INSTALLED ON BACKSHELL PLAY | HI-DEF
VIDEO: SOLAR ARRAY PANELS ATTACHED TO CRUISE RING PLAY | HI-DEF
SUBSCRIBE NOW

MISSION STATUS CENTER