Spaceflight Now Home



Spaceflight Now +



Subscribe to Spaceflight Now Plus for access to our extensive video collections!
How do I sign up?
Video archive

Introduction to ATV

Preview the maiden voyage of European's first Automated Transfer Vehicle, named Jules Verne. The craft will deliver cargo to the International Space Station.

 Full coverage

Station repair job

Station commander Peggy Whitson and flight engineer Dan Tani replace a broken solar array drive motor during a 7-hour spacewalk.

 Full coverage

Mercury science

Scientists present imagery and instrument data collected by NASA's MESSENGER spacecraft during its flyby of Mercury.

 Play

STS-98: Destiny lab

NASA's centerpiece module of the International Space Station -- the U.S. science laboratory Destiny -- rode to orbit aboard Atlantis in February 2001.

 Play | X-Large

Earth science update

NASA leaders discuss the agency's Earth science program and preview major activities planned for 2008, including the launch of three new satellites.

 Part 1 | Part 2

STS-97: ISS gets wings

Mounting the P6 power truss to the station and unfurling its two solar wings were the tasks for Endeavour's STS-97 mission.

 Play | X-Large

STS-92: ISS construction

The Discovery crew gives the station a new docking port and the box-like Z1 truss equipped with gyroscopes and a communications antenna.

 Play | X-Large

Expedition 17 crew

Pre-flight news briefing with the crew members to serve aboard the space station during various stages of Expedition 17.

 Play

Become a subscriber
More video



NASA says glacial sediments adding to Louisiana coast's sinking
NASA/JPL NEWS RELEASE
Posted: February 2, 2008

PASADENA, Calif. - A study by NASA and Louisiana State University scientists finds that sediments deposited into the Mississippi River Delta thousands of years ago when North America's glaciers retreated are contributing to the ongoing sinking of Louisiana's coastline. The weight of these sediments is causing a large section of Earth's crust to sag at a rate of 0.1 to 0.8 centimeters (0.04 to 0.3 inches) a year.

The sediments pose a particular challenge for New Orleans, causing it to sink irreversibly at a rate of about 0.4 centimeters (0.17 inches) a year, according to data from a network of global positioning system stations and a model of sediment data collected from the northern Gulf of Mexico and the Mississippi Delta.

Hurricanes Katrina and Rita in 2005 focused national attention on the Gulf coast's vulnerability to hurricanes due to loss of wetlands and sea level rise. These new findings add another factor for scientists, government agencies and the public to consider when assessing the vulnerability of the region to hurricanes and large storms.

A science team led by Erik Ivins of NASA's Jet Propulsion Laboratory, Pasadena, Calif., hypothesized that Earth's very slow gravitational flow response to the weight of the sediments, combined with a 130-meter (427-foot) rise in sea level that took place thousands of years ago, are contributing to the sinking of a 199,000-square kilometer (77,000-square-mile) section of coastal Louisiana.

To test their theory, the team developed a physical model of sinking caused by both the weight of the sea level rise and the flow of glacial sediments into the Gulf of Mexico following the retreat of the great ice sheet that covered much of North America some 22,000 years ago. The model spanned the past 750,000 years. Results were compared with actual global positioning system measurements and other geophysical data for southern Louisiana and the Gulf, collected from multiple sources over the past 60 years.

The scientists found the model results were in good agreement with the actual geophysical data, predicting sinking of between 0.1 centimeters (0.04 inches) and 0.8 centimeters (0.3 inches) a year. The highest sinking rates were observed where coastal land loss is greatest, near the center of the Mississippi and Atchafalaya River Delta complexes.

"Our study shows that the weight of these sediments on Earth's crust can explain between 0.1 and 0.8 centimeters (0.04 and 0.3 inches) of sinking per year," said study co-author Roy Dokka of Louisiana State University, Baton Rouge. "These sediments contribute a part of the region's sinking that's inevitable and must be considered when predicting rates of sinking and future sea level change in coastal Louisiana."

The scientists say when these results are combined with sinking totaling about 0.3 centimeters (0.12 inches) per year caused by other factors such as compaction and oxidation of sediments, pumping of oil and water by humans, faulting and sea level rise, the overall outlook isn't bright. "Louisiana is slowly losing its battle with the Gulf of Mexico," said Ivins. "Our model predicts this rate of sinking will continue for hundreds of years. Continued sinking, along with the sediment starvation of the coast caused by construction of flood control levees along the Mississippi River, will ultimately lead to the drowning of the coast."

Co-author Ron Blom of JPL adds that New Orleans is particularly vulnerable. "When the effect of this sinking near New Orleans is combined with a potential 0.9 centimeter (0.35 inch) annual sea level rise that could result should ice sheet melting accelerate as projected by many climate models, it is possible New Orleans could see a relative sea level rise of roughly one meter (3.3 feet) in the next 90 years," Blom said.

The good news, the authors say, is that, with refinement, their model may help the region prepare better for future large storms and the gradual inundation of the coast. "Our model gives civil engineers and disaster preparedness managers very precise predictions of how the landscape is changing so that they can better mitigate the effects of this sinking," said Ivins. "Understanding all of the processes affecting the coast is essential for engineering effective solutions."

Louisiana's coast is far from the centers of North America's former ice sheets, which were once as large as Antarctica, but successive periods of glacier formation and retreat have affected the region through sea level rises and changes in the flow of glacial sediments into the Gulf of Mexico. This process has been ongoing in cycles caused by regular variations in Earth's orbit. When the glaciers retreated, the resulting flooding transported large volumes of sediments down today's major river systems -- three to four times more than the Mississippi River currently transports.

The authors say the relative fluidity of Earth's upper mantle beneath the Gulf coast is the primary factor that determines how Earth's crust responds to deposited sediments. Earth's crust and uppermost mantle is weaker beneath the Gulf of Mexico than it is beneath eastern Canada.

Results of the study are published in Geophysical Research Letters. The research was funded by NASA, the National Science Foundation and the Louisiana Board of Regents.

JPL is managed for NASA by the California Institute of Technology in Pasadena.

John Glenn Mission Patch

Free shipping to U.S. addresses!

The historic first orbital flight by an American is marked by this commemorative patch for John Glenn and Friendship 7.
 U.S. STORE
 WORLDWIDE STORE

Final Shuttle Mission Patch

Free shipping to U.S. addresses!

The crew emblem for the final space shuttle mission is available in our store. Get this piece of history!
 U.S. STORE
 WORLDWIDE STORE

Celebrate the shuttle program

Free shipping to U.S. addresses!

This special commemorative patch marks the retirement of NASA's Space Shuttle Program. Available in our store!
 U.S. STORE
 WORLDWIDE STORE

Anniversary Shuttle Patch

Free shipping to U.S. addresses!

This embroidered patch commemorates the 30th anniversary of the Space Shuttle Program. The design features the space shuttle Columbia's historic maiden flight of April 12, 1981.
 U.S. STORE
 WORLDWIDE STORE

Mercury anniversary

Free shipping to U.S. addresses!


Celebrate the 50th anniversary of Alan Shephard's historic Mercury mission with this collectors' item, the official commemorative embroidered patch.
 U.S. STORE
 WORLDWIDE STORE

Fallen Heroes Patch Collection
The official patches from Apollo 1, the shuttle Challenger and Columbia crews are available in the store.
 U.S. STORE
 WORLDWIDE STORE

INDEX | PLUS | NEWS ARCHIVE | LAUNCH SCHEDULE
ASTRONOMY NOW | STORE

ADVERTISE

© 2014 Spaceflight Now Inc.