Spaceflight Now Home



Spaceflight Now +



Subscribe to Spaceflight Now Plus for access to our extensive video collections!
How do I sign up?
Video archive

STS-118: Highlights

The STS-118 crew, including Barbara Morgan, narrates its mission highlights film and answers questions in this post-flight presentation.

 Full presentation
 Mission film

STS-120: Rollout to pad

Space shuttle Discovery rolls out of the Vehicle Assembly Building and travels to launch pad 39A for its STS-120 mission.

 Play

Dawn leaves Earth

NASA's Dawn space probe launches aboard a Delta 2-Heavy rocket from Cape Canaveral to explore two worlds in the asteroid belt.

 Full coverage

Dawn: Launch preview

These briefings preview the launch and science objectives of NASA's Dawn asteroid orbiter.

 Launch | Science

ISS crew change preview

The Expedition 15 mission draws to a close aboard the space station and the Expedition 16 launch nears. These two briefings from Sept. 25 cover the upcoming transition between the two missions.

 Exp. 15 recap
 Exp. 16 preview

Discovery moves to VAB

Shuttle Discovery is transported from its hangar to the Vehicle Assembly Building for attachment to the external tank and boosters.

 Play

STS-120: The programs

In advance of shuttle Discovery's STS-120 mission to the station, managers from both programs discuss the flight.

 Play

STS-120: The mission

Discovery's trip to the station will install the Harmony module and move the P6 solar wing truss. The flight directors present a detailed overview of STS-120.

 Part 1 | Part 2

STS-120: Spacewalks

Five spacewalks are planned during Discovery's STS-120 assembly mission to the station. Lead spacewalk officer Dina Contella previews the EVAs.

 Full briefing
 EVA 1 summary
 EVA 2 summary
 EVA 3 summary
 EVA 4 summary
 EVA 5 summary

The Discovery crew

The Discovery astronauts, led by commander Pam Melroy, meet the press in the traditional pre-flight news conference.

 Play

Become a subscriber
More video



Orbiter gives color views of possible Mars landing sites
NASA/JPL NEWS RELEASE
Posted: October 14, 2007

PASADENA, CALIF. -- Less than a year since beginning the prime science phase of its mission, NASA's Mars Reconnaissance Orbiter has passed a mission-success milestone for the amount of data returned.

The data-volume target of 26 terabytes, which was surpassed this week, is equivalent to about 5,000 CD-ROMs full and exceeds the total from all other current and past Mars missions combined.


Rocky mesas of the Nilosyrtis Mensae region. This image shows a region of science interest to which the Mars Science Laboratory rover might drive. Credit: NASA/JPL-Caltech/Univ. of Arizona
Download larger image version here

 
The biggest shares of the data come from two of the orbiter's six science instruments: the High Resolution Imaging Science Experiment and the Compact Reconnaissance Imaging Spectrometer for Mars. The high-resolution camera's team of investigators, based at the University of Arizona, Tucson, have released 143 color images. The images reveal features as small as a desk. They are valuable to researchers studying possible landing sites for NASA's Mars Science Laboratory, a mission launching in 2009 to deploy a long-distance rover carrying sophisticated science instruments on Mars.

The camera team is also releasing a color movie, scrolling over one candidate Mars Science Laboratory landing site in Nili Fossae, at 21 degrees north latitude and 74 degrees east latitude. The animation shows a range of enhanced colors that correspond to what Mars Reconnaissance Orbiter's imaging spectrometer has determined to be hydrated clay minerals and unaltered volcanic rocks.

"The clay minerals are especially promising in the search for ancient life on Mars," UA Professor Alfred S. McEwen, principal investigator for the high resolution camera, said.

The color images released were taken at or near about 30 proposed landing sites for the 2009 mission. That mission's deputy project scientist, Ashwin Vasavada of NASA's Jet Propulsion Laboratory, Pasadena, Calif., said, "Scientists planning the Mars Science Laboratory must soon choose the one site on Mars where we can best investigate the extent to which Mars' environment is or was capable of supporting life -- no easy task. We've intentionally waited for the reconnaissance from the Mars Reconnaissance Orbiter to help us zero in on those places."

The orbiter's high-resolution camera has taken more than 3,500 huge, sharp images released in black-and-white since it began science operations in November 2006. The camera carries 10 red filter detectors, two blue-green filter detectors and 10 infrared detectors.


Nili Fossae Trough, a candidate Mars Science Lab landing site. Credit: NASA/JPL-Caltech/Univ. of Arizona
Download larger image version here

 
Beginning this week, images will be released in color as well as black-and-white on the camera team's Web site. The colors are false color, not the way Mars would look to human eyes. The images are processed to maximize color differences, a technique useful for analyzing landscapes.

"Color data are proving very useful in interpreting geologic processes and history on Mars," McEwen said. "The images we're releasing today include views of some of the most interesting and compositionally diverse areas on the planet."

The camera team developed computer software that automatically processes images from the different color filters into color images.  "The technical hurdle has been that the sets of different color detectors are staggered within the camera focal plane array, and the spacecraft isn't perfectly steady as it operates in space," the camera's operations manager, Eric Eliason of UA, said.

Color is a boon to geologists who have been trying to discriminate different surface materials and their relation to the topography, McEwen said. "Color clearly identifies basic material distinctions like dust, sand or rocks, light-toned layered material, and frost or ice," he said. Color also helps geologists correlate layers in the Martian terrain. And scientists will be able to combine data from the high-resolution camera and the imaging spectrometer to make detailed maps of minerals and soil types on the planet.

The Mars Reconnaissance Orbiter and the Mars Science Laboratory missions are managed by JPL, a division of the California Institute of Technology in Pasadena, for the NASA Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, is the prime contractor and built the spacecraft. The High Resolution Imaging Science Experiment is operated by the University of Arizona. Ball Aerospace and Technologies Corp., Boulder, Colo., built the instrument.


Layers inside Holden Crater in the southern hemisphere of Mars, a possible landing site for Mars Science lab, are shown in enhanced color. Credit: NASA/JPL-Caltech/Univ. of Arizona
Download larger image version here