Spaceflight Now Home



Spaceflight Now +



Subscribe to Spaceflight Now Plus for access to our extensive video collections!
How do I sign up?
Video archive

Launch of Phoenix

The Phoenix lander bound for the northern plains of Mars is launched atop a Delta 2 rocket from Cape Canaveral.

 Full coverage

Phoenix to the pad

The Phoenix lander bound for Mars is hauled to Cape Canaveral's pad 17A on July 23 for installation atop the Delta 2 rocket that will propel the craft on its cruise from Earth to Mars.

 Part 1 | Part 2

Dawn waits for date

The Dawn spacecraft is returned to a processing facility to await a new launch date. The mission was delayed from July to September, prompting the craft's removal from the Delta rocket at pad 17B.

 Part 1 | Part 2

Spacewalk highlights

This highlights movie from the July 23 station spacewalk shows the jettisoning of a support platform and a refrigerator-size tank.

 Play

Expedition 16 crew

Members of the upcoming space station Expedition 16 crew, led by commander Peggy Whitson, hold a pre-flight news briefing.

 Play

Mars lander preview

A preview of NASA's Phoenix Mars lander mission and the science objectives to dig into the arctic plains of the Red Planet are presented here.

 Play

Phoenix animation

Project officials narrate animation of Phoenix's launch from Earth, arrival at Mars, touchdown using landing rockets and the craft's robot arm and science gear in action.

 Play

Become a subscriber
More video



A monster galaxy pileup
YALE UNIVERSITY NEWS RELEASE
Posted: August 6, 2007

NEW HAVEN, Conn. - Four galaxies are slamming into each other and kicking up billions of stars in one of the largest cosmic smash-ups ever observed.

The clashing galaxies, spotted by NASA's Spitzer Space Telescope and the WIYN Telescope, will eventually merge into a single, behemoth galaxy up to 10 times as massive as our own Milky Way. This rare sighting provides an unprecedented look at how the most massive galaxies in the universe form.


This artist's concept shows what the night sky might look like from a hypothetical planet around a star tossed out of the ongoing collision between big galaxies (yellow blobs). Credit: NASA/JPL-Caltech/Harvard-Smithsonian CfA
 
"Most of the galaxy mergers we already knew about are like compact cars crashing together," said Kenneth Rines of the Harvard-Smithsonian Center for Astrophysics, Cambridge, Mass. "What we have here is like four sand trucks smashing together, flinging sand everywhere." Rines, who was a Mead postdoctoral fellow at Yale from 2003-6 when much of this work was done, is lead author of a paper accepted for publication in Astrophysical Journal Letters.

Collisions, or mergers, between galaxies are common in the universe. Gravity causes some galaxies that are close together to tangle and ultimately unite over a period of millions of years. Though stars in merging galaxies are tossed around like sand, they have a lot of space between them and survive the ride. Our Milky Way galaxy will team up with the Andromeda galaxy in five billion years.

Mergers between one big galaxy and several small ones, called minor mergers, are well documented. For example, one of the most elaborate known minor mergers is taking place in the Spiderweb galaxy - a massive galaxy that is catching dozens of small ones in its "web" of gravity. Astronomers have also witnessed "major" mergers among pairs of galaxies that are similar in size. But no major mergers between multiple hefty galaxies - the big rigs of the galaxy world - have been seen until now.

The new quadruple merger was discovered serendipitously during a survey of a distant cluster of galaxies, called CL0958+4702, located nearly five billion light-years away. The telescopes first spotted an unusually large fan-shaped plume of light coming out of a gathering of four blob-shaped, or elliptical, galaxies. Three of the galaxies are about the size of the Milky Way, while the fourth is three times as big.

"The colors from the WIYN and Spitzer data show that the stars are old, but the higher resolution WIYN images show that the light from the disrupted galaxy does not have small-scale structure but is instead smoothly distributed telling us that the galaxies involved in the merger are elliptical rather than spiral galaxies," said Jeffrey Kenney, professor and chair of Astronomy at Yale.

According to Kenney, WIYN (named for itıs joint ownership by the University of Wisconsin, Indiana University, Yale University, and the National Optical Astronomy Observatory) is one of the best imaging telescopes in the world. "The sharpness of the WIYN images helps show that we are in fact seeing a merger, and what type of galaxies have merged."

"The WIYN telescope provides some of the sharpest images possible from ground-based telescopes. The WIYN images show that the four galaxies have well-defined cores that have held together during the merger, much like egg yolks stay together longer than egg whites if you "merge" them in a mixing bowl," said Rines.

Further analysis of the plume revealed that it is made up of billions of older stars flung out and abandoned in an ongoing clash.  About half of the stars in the plume will later fall back into the galaxies. "When this merger is complete, this will be one of the biggest galaxies in the universe," said Rines.


One of the biggest galaxy collisions ever observed is taking place at the center of this image. The four yellow blobs in the middle are large galaxies that have begun to tangle and ultimately merge into a single gargantuan galaxy. Credit: NASA/JPL-Caltech/CXO/WIYN/Harvard-Smithsonian CfA
 
The Spitzer observations also show that the new merger lacks gas. Theorists predict that massive galaxies grow in a variety of ways, including gas-rich and gas-poor mergers. In gas-rich mergers, the galaxies are soaked with gas that ignites to form new stars. Gas-poor mergers lack gas, so no new stars are formed. Spitzer found only old stars in the quadruple encounter.

"The Spitzer data show that these major mergers are gas-poor, unlike most mergers we know about," said Rines. "The data also represent the best evidence that the biggest galaxies in the universe formed fairly recently through major mergers."

Some of the stars tossed out in the monstrous merger will live in isolated areas outside the borders of any galaxies. Such abandoned stars could theoretically have planets. If so, the planets' night skies would be quite different from our own, with fewer stars and more visible galaxies.

In addition to Spitzer and WIYN, Rines and his team used a telescope formerly known as the Multiple Mirror Telescope and now called MMT near Tucson, Ariz., to confirm that the four galaxies are intertwined, and NASA's Chandra X-ray Observatory to weigh the mass of the giant cluster of galaxies in which the merger was discovered. Both Spitzer and WIYN, also near Tucson, Ariz., were used to study the plume.

Other authors of this paper include Rose Finn of Siena College, Loudonville, N.Y.; and Alexey Vikhlinin of the Harvard-Smithsonian Center for Astrophysics.

NASA's Jet Propulsion Laboratory, Pasadena, Calif., manages the Spitzer Space Telescope mission for NASA's Science Mission Directorate, Washington. Science operations are conducted at the Spitzer Science Center at the California Institute of Technology, also in Pasadena. Caltech manages JPL for NASA. Spitzer's infrared array camera was built by NASA's Goddard Space Flight Center, Greenbelt, Md. The instrument's principal investigator is Giovanni Fazio of the Harvard-Smithsonian Center for Astrophysics.