Spaceflight Now Home



Spaceflight Now +



Premium video content for our Spaceflight Now Plus subscribers.

STS-54: TDRS and toys
Space shuttle Endeavour lofted another Tracking and Data Relay Satellite into orbit for NASA during a January 1993 mission. An Inertial Upper Stage boosted the craft toward geosynchronous orbit. Other highlights from STS-54 included a mobility-testing spacewalk and an educational project to demonstrate the physics behind toys in space. The crew narrates this post-flight film.

 Play

STS-52: Lofting LAGEOS
The Laser Geodynamics Satellite (LAGEOS), a small ball-shaped spacecraft designed to help earthquake research by monitoring the movements of the Earth's crustal plates, was launched from space shuttle Columbia in October 1992. The crew of STS-52 narrate the highlights of the mission, which included Canadian and microgravity experiments.

 Play

Expedition 15 briefing
In advance of launching the Expedition 15 mission to the International Space Station, NASA officials preview the flight's objectives and challenges in this news briefing held March 27 at Johnson Space Center.

 Play

Expedition 14 recap
As the International Space Station's Expedition 14 winds down, officials managing the flight from Mission Control in Houston hold this retrospective briefing to talk about the mission.

 Play

STS-47: Spacelab Japan
The 50th flight of the space shuttle took place in September 1992. Endeavour's mission featured the Spacelab-J research module for Japan, as well as the first black female astronaut and the first married couple to fly together in space. The crew narrates the highlights in their post-flight film.

 Play

STS-46: Unreeling the tethered satellite
Shuttle Atlantis' summer 1992 flight provided the chance to test a revolutionary payload -- the Tethered Satellite System. A snag in the tether prevented a small satellite from reeling miles away from the shuttle as planned, the partial deployment showed power generation using the shoelace-size tether could work. The STS-46 mission also released the European Retrievable Carrier spacecraft to begin a year-long stay in orbit. The astronauts narrate highlights from the flight in this movie.

 Play

Become a subscriber
More video



Did dust bust the 2006 hurricane season forecasts?
NASA-GSFC NEWS RELEASE
Posted: March 31, 2007

A recent NASA study suggests that tiny dust particles may have foiled forecasts that the 2006 hurricane season would be another active one.

In June and July 2006, there were several significant dust storms over the Sahara Desert in Africa. As this dust traveled westward into the Atlantic, satellite data show that the particles blocked sunlight from reaching the ocean surface, causing ocean waters to cool. These cooler waters may have impeded some storminess since hurricanes rely on warm waters to form.

The 2006 Atlantic hurricane season wrapped up on Nov. 30 with just four tropical storms and five hurricanes, relatively calm compared to the record number of 12 tropical storms and 15 hurricanes in 2005.

While several factors likely contributed to the sharp decrease in the number of storms, "this research is the first to show that dust does have a major effect on seasonal hurricane activity," said lead author William Lau, chief of the Laboratory for Atmospheres at NASA's Goddard Space Flight Center, Greenbelt, Md. "Dust concentrations may play as big a role as other atmospheric conditions, like El Nino, and offer some predictive value, so they should be closely monitored to improve hurricane forecasts."

Other researchers, however, say that atmospheric dust may have had relatively little influence on the 2006 hurricane season compared to the effects of underlying El Nino conditions.

Sea surface temperatures in 2006 across the prime hurricane-breeding regions of the Atlantic and Caribbean were found to be as much as 1 degree Celsius (1.8 degrees Fahrenheit) cooler than in 2005. Most striking was how quickly sea surface temperatures responded to variations in the amount of Saharan dust, Lau said. Following the most significant dust outbreak, which occurred in June and July, ocean waters cooled abruptly in just two weeks, suggesting that the dust had an almost immediate effect.

The dust worked to cool the ocean, but it also warmed the atmosphere by absorbing more of the sun's energy. This temperature difference resulted in a shift in the large-scale atmospheric circulation. As air rose over West Africa and the tropical Atlantic, it sank and became less moist over the western Atlantic and Caribbean. This pattern helped to increase surface winds that enhanced ocean evaporation and churned deeper, colder waters, causing the area of cool seas to expand.

Lau and co-author Kyu-Myong Kim of Goddard analyzed data on ocean temperatures, clouds, and water vapor from NASA's Tropical Rainfall Measuring Mission satellite and atmospheric dust levels from the Ozone Monitoring Instrument on NASA's Aura satellite. The study was published in the Feb. 27 issue of the American Geophysical Union's Eos.

The research also considered the role of El Nino by examining historical data on the intensity and development of tropical storms and hurricanes across the Atlantic basin. "We found that Saharan dust may have a stronger influence than El Nino on hurricane formation in the subtropical western Atlantic and Caribbean, but that El Nino has a greater impact in the tropical eastern Atlantic, where many storms are generated," said Lau.

El Nino is the periodic warming of the ocean waters in the central and eastern equatorial Pacific, which in turn can influence pressure and wind patterns across the tropical Atlantic.

"In 2006, it is quite possible that the Saharan dust may have amplified or even initiated pre-existing atmosphere-ocean conditions due to El Nino," said Lau. But other researchers say that while the amount of atmospheric dust in 2006 was greater than in 2005, the increase may have been too insignificant to be influential on the season. Instead, they believe the atmospheric effects from the underlying El Nino pattern in 2006 likely played a greater role.

Scott Braun, a hurricane specialist at NASA's Goddard Space Flight Center, said that in 2006, El Nino brought about broad changes to atmospheric conditions that likely had at least some influence on hurricane formation across much of the Atlantic.

Braun noted that during most of the hurricane season a large area of high pressure was located across the eastern Atlantic. This steered disturbances away from the warmest waters, so that they were less able to mature into tropical storms and hurricanes. At the same time, sinking motion ⤳ an atmospheric air mass that has cooled and is falling ⤳ combined with enhanced winds in the middle and upper atmosphere to minimize development in the Caribbean and western Atlantic and keep storms away from the U.S. These strong upper-level winds would contribute to a drastic change of winds with height, known as "shear" that can rip storms apart.

"This large-scale pattern has been associated with the effects of El Nino, suggesting it may have played a role in the seasonal activity," said Braun. "In fact, the last time the Atlantic produced so few storms was in 1997, when an El Nino pattern was also in place."

Braun and another hurricane researcher, Bowen Shen at NASA's Goddard Space Flight Center, agree that factors other than increased atmospheric dust may have contributed to cooler ocean waters in 2006.

"It is arguable that stronger surface winds over the tropical Atlantic may have cooled sea surface temperatures," said Shen. These winds likely helped to keep waters cooler by mixing the upper layers of the ocean and sweeping warmer waters westward. And although the waters were certainly cooler in 2006 than in 2005, they were still at or slightly above normal, suggesting other conditions helped to shape the season.

Current and future research efforts that examine how the ocean responds to surface winds and dust should help clarify their role in hurricane development. Although seasonal atmospheric patterns may increase the amount of dust across the Atlantic, the same atmospheric patterns may also be responsible for creating stronger winds at the ocean surface. By modeling the oceans, winds, and dust, researchers will generate a clearer picture of how these conditions vary from season to season.

"Although we continue to make significant strides in forecasting hurricanes and understanding their development, it is important to remember that the atmosphere is a chaotic system and numerous meteorological variables influence individual storms and activity throughout the season. NASA's constellation of several Earth-observing satellites, including Aura, is designed to provide coordinated measurements of these many variables for future research," said Lau.

Final Shuttle Mission Patch

Free shipping to U.S. addresses!

The crew emblem for the final space shuttle mission is now available in our store. Get this piece of history!
 U.S. STORE
 WORLDWIDE STORE

STS-134 Patch

Free shipping to U.S. addresses!

The final planned flight of space shuttle Endeavour is symbolized in the official embroidered crew patch for STS-134. Available in our store!
 U.S. STORE
 WORLDWIDE STORE

Ares 1-X Patch
The official embroidered patch for the Ares 1-X rocket test flight, is available for purchase.
 U.S. STORE
 WORLDWIDE STORE

Apollo Collage
This beautiful one piece set features the Apollo program emblem surrounded by the individual mission logos.
 U.S. STORE
 WORLDWIDE STORE

Project Orion
The Orion crew exploration vehicle is NASA's first new human spacecraft developed since the space shuttle a quarter-century earlier. The capsule is one of the key elements of returning astronauts to the Moon.
 U.S. STORE


Fallen Heroes Patch Collection
The official patches from Apollo 1, the shuttle Challenger and Columbia crews are available in the store.
 U.S. STORE
 WORLDWIDE STORE

INDEX | PLUS | NEWS ARCHIVE | LAUNCH SCHEDULE
ASTRONOMY NOW | STORE

ADVERTISE

© 2014 Spaceflight Now Inc.