Spaceflight Now Home



Spaceflight Now +



Premium video content for our Spaceflight Now Plus subscribers.

STS-117 crew bios
Three veterans and three rookies make up the six-man astronaut crew launching aboard space shuttle Atlantis' STS-117 space station assembly mission. Meet the crew members and learn how each became an astronaut in this special biography movie.

 Play

Mars rover flyovers
Images taken by the Mars Reconnaissance Orbiter have been assembled to create these flyover animations of the Columbia Hills where the Spirit rover is exploring and the Opportunity rover at Victoria Crater.

 Spirit | Opportunity

Seas on Titan
NASA's Cassini spacecraft has found evidence for seas, likely filled with liquid methane or ethane, in the high northern latitudes of Saturn's moon Titan. This movie includes animation of the craft's encounters with Titan and an interview with insight into the science.

 Play

Atlas 5 launches STP 1
The United Launch Alliance Atlas 5 rocket with the U.S. military's Space Test Program 1 payload launches Cape Canaveral.

 Full Coverage

Atlantis rolls back
Battered by an intense hail storm six days earlier, space shuttle Atlantis retreated off launch pad 39A and returned to the cavernous Vehicle Assembly Building on March 4 to undergo thorough inspections and repairs.

 Video | Time-lapse

STS-112: ISS expansion
Atlantis made a week-long visit to the International Space Station in October 2002 that began the outward expansion of the outpost's truss backbone. Attachment of the 14.5-ton Starboard 1 segment was primary objective of the STS-112 mission. The astronauts tell the story of the flight in this post-flight movie.

 Play

NASA budget hearing
This U.S. Senate space subcommittee hearing to examine NASA's proposed Fiscal Year 2008 budget features testimony from NASA Administrator Mike Griffin on February 28.

 Part 1 | Part 2

Become a subscriber
More video



International spacecraft gives new view of the sun
NASA NEWS RELEASE
Posted: March 21, 2007

WASHINGTON - NASA released on Wednesday never-before-seen images that show the sun's magnetic field is much more turbulent and dynamic than previously known. The international spacecraft Hinode, formerly known as Solar B, took the images.


Taken by Hinode's Solar Optical Telescope, this image reveals the fine scale structure in the chromosphere that extends outward above the top of the convection cells, or granulation, of the photosphere. The structure results from the interaction of hot ionized gas with the magnetic field. Credit: Hinode JAXA/NASA
 
Hinode, Japanese for "sunrise," was launched Sept. 23, 2006, to study the sun's magnetic field and how its explosive energy propagates through the different layers of the solar atmosphere. The spacecraft's uninterrupted high-resolution observations of the sun will have an impact on solar physics comparable to the Hubble Space Telescope's impact on astronomy.

"For the first time, we are now able to make out tiny granules of hot gas that rise and fall in the sun's magnetized atmosphere," said Dick Fisher, director of NASA's Heliophyics Division, Science Mission Directorate, Washington. "These images will open a new era of study on some of the sun's processes that effect Earth, astronauts, orbiting satellites and the solar system."

Hinode's three primary instruments, the Solar Optical Telescope, the X-ray Telescope and the Extreme Ultraviolet Imaging Spectrometer, are observing the different layers of the sun. Studies focus on the solar atmosphere from the visible surface of the sun, known as the photosphere, to the corona, the outer atmosphere of the sun that extends outward into the solar system.

"By coordinating the measurements of all three instruments, Hinode is showing how changes in the structure of the magnetic field and the release of magnetic energy in the low atmosphere spread outward through the corona and into interplanetary space to create space weather," said John Davis, project scientist from NASA's Marshall Space Flight Center, Huntsville, Ala.

Space weather involves the production of energetic particles and emissions of electromagnetic radiation. These bursts of energy can black out long-distance communications over entire continents and disrupt the global navigational system.

"Hinode images are revealing irrefutable evidence for the presence of turbulence-driven processes that are bringing magnetic fields, on all scales, to the sun's surface, resulting in an extremely dynamic chromosphere or gaseous envelope around the sun," said Alan Title, a corporate senior fellow at Lockheed Martin, Palo Alto, Calif., and consulting professor of physics at Stanford University, Stanford, Calif.

Hinode is a collaborative mission led by the Japan Aerospace Exploration Agency and includes the European Space Agency and Britain's Particle Physics Astronomy Research Council. The National Astronomical Observatory of Japan, Tokyo, developed the Solar Optical Telescope, which provided the fine-scale structure views of the sun's lower atmosphere, and developed the X-ray Telescope in collaboration with the Smithsonian Astrophysical Observatory of Cambridge, Mass. The X-ray Telescope captured the rapid, time-sequenced images of explosive events in the sun's outer atmosphere.

"By following the evolution of the solar structures that outline the magnetic field before, during and after these explosive events, we hope to find clear evidence to establish that magnetic reconnection is the underlying cause for this explosive activity," said Leon Golub of the Smithsonian Astrophysical Observatory.

The Marshall Space Flight Center manages the development of the scientific instrumentation provided for the mission by NASA, industry and other federal agencies.