Spaceflight Now Home



Spaceflight Now +



Premium video content for our Spaceflight Now Plus subscribers.

Research Project: X-15
The documentary "Research Project: X-15" looks at the rocketplane program that flew to the edge of space in the effort to learn about the human ability to fly at great speeds and aircraft design to sustain such flights.

 Play

Apollo 1 service
On the 40th anniversary of the Apollo 1 fire that took the lives of astronauts Gus Grissom, Ed White and Roger Chaffee, a remembrance service was held January 27 at the Kennedy Space Center's memorial Space Mirror.

 Part 1 | Part 2

Technical look at
Project Mercury

This documentary takes a look at the technical aspects of Project Mercury, including development of the capsule and the pioneering first manned flights of America's space program.

 Play

Apollo 15: In the Mountains of the Moon
The voyage of Apollo 15 took man to the Hadley Rille area of the moon. Astronauts Dave Scott and Jim Irwin explored the region using a lunar rover, while Al Worden remained in orbit conducting observations. "Apollo 15: In the Mountains of the Moon" is a NASA film looking back at the 1971 flight.

 Play

Skylab's first 40 days
Skylab, America's first space station, began with crippling problems created by an incident during its May 1973 launch. High temperatures and low power conditions aboard the orbital workshop forced engineers to devise corrective measures quickly. Astronauts Pete Conrad, Paul Weitz and Joe Kerwin flew to the station and implemented the repairs, rescuing the spacecraft's mission. This film tells the story of Skylab's first 40 days in space.

 Play

Jupiter flyby preview
NASA's New Horizons space probe will fly past Jupiter in late February, using the giant planet's gravity as a sling-shot to bend the craft's trajectory and accelerate toward Pluto and the Kuiper Belt. Mission officials describe the science to be collected during the Jupiter encounter during this briefing.

 Play

Supplies arrive at ISS
The 24th Russian Progress resupply ship sent to the International Space Station successfully makes the final approach and docking to the Pirs module of the outpost while running on automated controls.

 Rendezvous | Docking

The Flight of Sigma 7
On October 3, 1962, Wally Schirra became the fifth American to rocket into space. This NASA film entitled "The Flight of Sigma 7" explains the 9-hour voyage that gained important knowledge in the Mercury program.

 Play

Become a subscriber
More video



'Relic' wind reveals past behavior of dead stars
GLAST SCIENCE SYMPOSIUM NEWS RELEASE
Posted: February 6, 2007

A team of astronomers from France and South Africa, members of the H.E.S.S. (the High Energy Stereoscopic System) multi-national collaboration, has announced the first catalog of a new type of gamma-ray source, a dozen clouds of "relic" radiation from dead stars that reveal information about the energetic past of these celestial objects.

These findings were presented on Feb. 5, 2007 by Dr. Arache Djannati-Atai, an astrophysicist from the APC (Astroparticle & Cosmology) laboratory in Paris, France, at the first Gamma Ray Large-Area Space Telescope (GLAST) scientific Symposium meeting in Palo Alto, Calif. Other members of the team are Drs. Anne Lemere and Regis Terrier, also from the APC, and Prof. Okkie de Jager from Space Unit, North Western University, in Potchefstroom, South Africa.

This catalog of "relic" nebulae was obtained through detailed study and modeling of sources discovered during 2004 and 2005 by the H.E.S.S. collaboration. H.E.S.S. is a group of four 40-foot telescopes located in Namibia, Africa.

The very high-energy gamma rays detected by H.E.S.S. appeared to be coming from regions near to pulsars - rapidly spinning ultra-dense objects created when a massive star explodes as a supernova - but not close enough to be produced directly by the pulsars themselves. While it has been known previously that pulsars emit a “wind” of particles, it had not been thought that the extent of gamma-ray emission from the wind could be on this large a scale: many of these objects are surrounded by a gamma-ray glow many dozens of light years across. Dr. Djannati-Atai and other team members have shown that these winds, which are powered by the pulsar over all its lifetime, are indeed the source of these very energetic gamma rays.

Pulsars, first discovered in 1967, are the extremely dense remnants of exploded stars, which typically have a mass that is 1.4 times that of the Sun squeezed down into a ball only a few miles across. Pulsars have very strong magnetic fields, billions and even trillions as times as powerful as the Earth’s. This incredible magnetism can accelerate electrons to speeds to very nearly that of light. When such an electron slams into a particle of light (a photon), the photon can pick up the energy of the electron in a process known as "inverse Compton scattering". An ordinary photon of light can be energized tremendously, becoming a super-high-energy gamma ray. The gamma rays detected by H.E.S.S. have a trillion times the energy of visible light.

Winds from pulsars have been known for many years. The most famous example is that from the pulsar in the center of the Crab Nebula, a bright cloud of expanding gas from a star that exploded in the year 1054. In that case, the wind generates X-rays (which have less energy than gamma rays) through synchrotron radiation and gamma rays through the inverse Compton scattering. These X-rays and gamma rays are seen coming from gas a few light years across at most.

The objects detected by the H.E.S.S. team are far more extended. The glow of gamma rays seen from the pulsar PSR B1823-13, for example, is approximately 100 light years across. The larger size of this gamma-ray emitting region means the electrons producing the gamma rays have traveled further and so come from a period earlier in the pulsar’s history.

This in turn means that studying the gamma rays from pulsar winds can give astronomers insight into the history of the pulsar itself and how its magnetic field has changed over the past tens of thousands of years.

Commenting on these results, Dr. Arache Djannati-Atai said, "... about half of the sources discovered by H.E.S.S. in the central parts of the Galactic Plane are most likely large relic gamma-ray nebulae associated with middle-aged pulsars: these nebulae should then constitute a major component of the very high energy gamma-ray sky. Further observations in radio, X-rays, gamma-rays and detailed studies of these objects should confirm further these results and yield precious insights on the evolution of the pulsars and their nebula including constraints on the magnetic field evolution with time.”

Observations with the Gamma Ray Large Area Space Telescope (GLAST) would aid greatly in understanding the physics of these objects, filling a gap in the energies detected by other telescopes. GLAST is due for launch in late 2007. It is a collaborative effort between NASA, the U.S. Department of Energy and institutions in France, Germany, Japan, Italy and Sweden. General Dynamics has been chosen to build the spacecraft.

Acknowledgements:

The support of the Namibian authorities and of the University of Namibia in facilitating the construction and operation of H.E.S.S. is gratefully acknowledged, as is the support by the German Ministry for Education and Research (BMBF), the Max Planck Society, the French Ministry for Research, the CNRS-IN2P3 and the Astroparticle Interdisciplinary Programme of the CNRS, the U.K. Particle Physics and Astronomy Research Council (PPARC), the IPNP of the Charles University, the South African Department of Science and Technology and National Research Foundation, and by the University of Namibia.

We appreciate the excellent work of the technical support staff in Berlin, Durham, Hamburg, Heidelberg, Palaiseau, Paris, Saclay, and in Namibia in the construction and operation of the equipment.