Spaceflight Now Home



Spaceflight Now +



Premium video content for our Spaceflight Now Plus subscribers.

MRO early images
Some of the initial pictures and data from NASA's Mars Reconnaissance Orbiter since the craft entered its mapping orbit around the Red Planet are presented in this news briefing held October 16 from the Jet Propulsion Laboratory.

 PLAY

Soyuz moves ports
The three-man Expedition 14 crew of the International Space Station complete a short trip, flying their Soyuz capsule to another docking port in preparation for receiving a resupply ship.

 Undock | Re-dock

STS-39: Military maneuvers
Space shuttle Discovery's STS-39 flight, launched in April 1991, served as a research mission for the U.S. Department of Defense. An instrument-laden spacecraft for the Strategic Defense Initiative Organization was released to watch Discovery perform countless rocket firings and maneuvers, as well as canisters releasing clouds of gas. The crew tells the story of the mission in this post-flight film presentation.

 Small | Large

STS-37: Spacewalkers help Gamma Ray Observatory
Seeking to study explosive forces across the universe, the Gamma Ray Observatory was launched aboard shuttle Atlantis in April 1991. But when the craft's communications antenna failed to unfold, spacewalking astronauts ventured outside the shuttle to save the day. The rescue EVA was followed by a planned spacewalk to test new equipment and techniques. The crew of STS-37 narrate this post-flight mission film.

 Small | Large

Mars rover seen by orbiter
Dazzling images from Mars are revealed by scientists. The robotic rover Opportunity has reached the massive Victoria crater with its steep cliffs and layers of rock exposing the planet's geologic history. Meanwhile, the new Mars Reconnaissance Orbiter has photographed the rover and its surroundings from high above.

 PLAY

Hubble discovery
n this news conference from NASA Headquarters, scientists announce the Hubble Space Telescope's discovery of 16 extrasolar planet candidates orbiting a variety of distant stars in the central region of our Milky Way galaxy. Five of the newly found planets represent a new extreme type of planet not found in any nearby searches.

 Small | Large

Become a subscriber
More video



Antarctic ozone hole is a record breaker
NASA NEWS RELEASE
Posted: October 19, 2006

NASA and National Oceanic and Atmospheric Administration (NOAA) scientists report this year's ozone hole in the polar region of the Southern Hemisphere has broken records for area and depth.


From September 21-30, the average area of the ozone hole was the largest ever observed, at 10.6 million square miles. This image, from Sept. 24, the Antarctic ozone hole was equal to the record single-day largest area of 11.4 million square miles, reached on Sept. 9, 2000. The blue and purple colors are where there is the least ozone, and the greens, yellows, and reds are where there is more ozone. Credit: NASA
 
The ozone layer acts to protect life on Earth by blocking harmful ultraviolet rays from the sun. The "ozone hole" is a severe depletion of the ozone layer high above Antarctica. It is primarily caused by human-produced compounds that release chlorine and bromine gases in the stratosphere.

"From September 21 to 30, the average area of the ozone hole was the largest ever observed, at 10.6 million square miles," said Paul Newman, atmospheric scientist at NASA's Goddard Space Flight Center, Greenbelt, Md. If the stratospheric weather conditions had been normal, the ozone hole would be expected to reach a size of about 8.9 to 9.3 million square miles, about the surface area of North America.

The Ozone Monitoring Instrument on NASA's Aura satellite measures the total amount of ozone from the ground to the upper atmosphere over the entire Antarctic continent. This instrument observed a low value of 85 Dobson Units (DU) on Oct. 8, in a region over the East Antarctic ice sheet. Dobson Units are a measure of ozone amounts above a fixed point in the atmosphere. The Ozone Monitoring Instrument was developed by the Netherlands' Agency for Aerospace Programs, Delft, The Netherlands, and the Finnish Meteorological Institute, Helsinki, Finland.

Scientists from NOAA's Earth System Research Laboratory in Boulder, Colo., use balloon-borne instruments to measure ozone directly over the South Pole. By Oct. 9, the total column ozone had plunged to 93 DU from approximately 300 DU in mid-July. More importantly, nearly all of the ozone in the layer between eight and 13 miles above the Earth's surface had been destroyed. In this critical layer, the instrument measured a record low of only 1.2 DU., having rapidly plunged from an average non-hole reading of 125 DU in July and August.

"These numbers mean the ozone is virtually gone in this layer of the atmosphere," said David Hofmann, director of the Global Monitoring Division at the NOAA Earth System Research Laboratory. "The depleted layer has an unusual vertical extent this year, so it appears that the 2006 ozone hole will go down as a record-setter."

Observations by Aura's Microwave Limb Sounder show extremely high levels of ozone destroying chlorine chemicals in the lower stratosphere (approximately 12.4 miles high). These high chlorine values covered the entire Antarctic region in mid to late September. The high chlorine levels were accompanied by extremely low values of ozone.

The temperature of the Antarctic stratosphere causes the severity of the ozone hole to vary from year to year. Colder than average temperatures result in larger and deeper ozone holes, while warmer temperatures lead to smaller ones. The NOAA National Centers for Environmental Prediction (NCEP) provided analyses of satellite and balloon stratospheric temperature observations. The temperature readings from NOAA satellites and balloons during late-September 2006 showed the lower stratosphere at the rim of Antarctica was approximately nine degrees Fahrenheit colder than average, increasing the size of this year's ozone hole by 1.2 to 1.5 million square miles.

The Antarctic stratosphere warms by the return of sunlight at the end of the polar winter and by large-scale weather systems (planetary-scale waves) that form in the troposphere and move upward into the stratosphere. During the 2006 Antarctic winter and spring, these planetary-scale wave systems were relatively weak, causing the stratosphere to be colder than average.

As a result of the Montreal Protocol and its amendments, the concentrations of ozone-depleting substances in the lower atmosphere (troposphere) peaked around 1995 and are decreasing in both the troposphere and stratosphere. It is estimated these gases reached peak levels in the Antarctica stratosphere in 2001. However, these ozone-depleting substances typically have very long lifetimes in the atmosphere (more than 40 years).

As a result of this slow decline, the ozone hole is estimated to annually very slowly decrease in area by about 0.1 to 0.2 percent for the next five to 10 years. This slow decrease is masked by large year-to-year variations caused by Antarctic stratosphere weather fluctuations.

The recently completed 2006 World Meteorological Organization/United Nations Environment Programme Scientific Assessment of Ozone Depletion concluded the ozone hole recovery would be masked by annual variability for the near future and the ozone hole would fully recover in approximately 2065.

"We now have the largest ozone hole on record," said Craig Long of NCEP. As the sun rises higher in the sky during October and November, this unusually large and persistent area may allow much more ultraviolet light than usual to reach Earth's surface in the southern latitudes.