Spaceflight Now Home



Spaceflight Now +



Premium video content for our Spaceflight Now Plus subscribers.

Shuttle collection
As excitement builds for the first space shuttle launch in over two years, this comprehensive video selection captures the major pre-flight events for Discovery and her seven astronauts.
 See selection

Tropical Storm Arlene
A camera on the International Space Station captured this view of Tropical Storm Arlene moving into the Gulf of Mexico as the orbiting complex flew above the weather system at 2:33 p.m. EDT on Friday, June 10. (3min 06sec file)
 Play video

Hurricane research
NASA's space-based research into how hurricanes form and move is explained in this narrated movie from the agency. (8min 02sec file)
 Play video

Volcano on Titan?
Dr. Bonnie Buratti, team member of the Cassini visual and infrared mapping spectrometer, discusses a possible volcano discovered on Saturn's moon Titan. (2min 12sec file)
 Play video

Shuttle oversight
The co-chairs and other members of the Stafford-Covey Return to Flight Task Group, which is overseeing NASA's space shuttle program, hold a news conference in Houston on June 8.

 Play video:
Presentation | Questions

Discovery demate preps
Technicians ready space shuttle Discovery for demating from the external fuel tank inside the Vehicle Assembly Building. (1min 24sec file)
 Play video

Shuttle removed from tank
Space shuttle Discovery is demated from its original external fuel tank and solid rocket boosters. The ship is lowered to its transport trailer in the Vehicle Assembly Building. (2min 38sec file)
 Play video

Discovery in the VAB
Shuttle Discovery enters into the Vehicle Assembly Building after a 10-hour journey from launch pad 39B. (4min 29sec file)
 Play video

Memorial Day message
The International Space Station's Expedition 11 crew pays tribute to our fallen heroes for Memorial Day. (1min 00sec QuickTime file)
 Play video

Apollo-era transporter
In the predawn hours, the Apollo-era crawler-transporter is driven beneath shuttle Discovery's mobile launch platform at pad 39B in preparation for the rollback to the Vehicle Assembly Building. (2min 37sec QuickTime file)
 Play video

Unplugging the shuttle
Workers disconnect a vast number of umbilicals running between launch pad 39B and Discovery's mobile launch platform for the rollback. The cabling route electrical power, data and communications to the shuttle. (2min 32sec file)
 Play video

Shuttle rollback
The crawler-transporter begins rolling space shuttle Discovery off launch pad 39B at 6:44 a.m. EDT May 26 for the 4.2-mile trip back to the Vehicle Assembly Building. (7min 28sec file)
 Play video

Voyager adventures
This animation shows the Voyager spacecraft heading into the solar system's final frontier and the edge of interstellar space. (1min 24sec file)
 Play video

Become a subscriber
More video



Astronomers discover active Earth-like planet
NATIONAL SCIENCE FOUNDATION NEWS RELEASE
Posted: June 13, 2005

Taking a major step forward in the search for Earth-like planets beyond our own solar system, a team of astronomers has announced the discovery of the smallest extrasolar planet yet detected. About seven-and-a-half times as massive as Earth, with about twice the radius, it may be the first rocky planet ever found orbiting a normal star not much different from our Sun.


In this artist's conception, the newly discovered planet is shown as a hot, rocky, geologically active world glowing in the deep red light of its nearby parent star, the M dwarf Gliese 876. Credit: Trent Schindler, National Science Foundation
 
All of the nearly 150 other extrasolar planets discovered to date around normal stars have been larger than Uranus, an ice-giant planet in our own solar system that is about 15 times the mass of the Earth.

"We keep pushing the limits of what we can detect, and we're getting closer and closer to finding Earths," said team member Steven Vogt, a professor of astronomy and astrophysics at the University of California, Santa Cruz.

The newly discovered "super-Earth" orbits the star Gliese 876, located just 15 light years away in the direction of the constellation Aquarius. This star also possesses two larger, Jupiter-size planets. The new planet whips around the star in a mere two days, and is so close to the star's surface that its dayside temperature probably tops 400 to 750 degrees Fahrenheit (200 to 400 degrees Celsius)--oven-like temperatures far too hot for life as we know it.

Nevertheless, the ability to detect the tiny wobble the planet induces in the star gives astronomers confidence that they will be able to detect even smaller rocky planets in orbits more hospitable to life.

"This is the smallest extrasolar planet yet detected and the first of a new class of rocky terrestrial planets," said team member Paul Butler of the Carnegie Institution of Washington. "It's like Earth's bigger cousin."

The team measures a minimum mass for the planet of 5.9 Earth masses, orbiting Gliese 876 with a period of 1.94 days at a distance of 0.021 astronomical units (AU), or 2 million miles.

Though the team has no direct proof the planet is rocky, they believe its low mass precludes it from retaining gas like Jupiter. Three other purported rocky planets have been reported outside the solar system, but they orbit a pulsar, the flashing corpse of an exploded star.

"This planet answers an ancient question," said team leader Geoffrey Marcy, professor of astronomy at the University of California, Berkeley. "Over 2,000 years ago, the Greek philosophers Aristotle and Epicurus argued about whether there were other Earth-like planets. Now, for the first time, we have evidence for a rocky planet around a normal star."

"Today's results are an important step toward answering one of the most profound questions that mankind can ask: Are we alone in the universe?" said Michael Turner, head of the Mathematical and Physical Sciences directorate at the National Science Foundation (NSF), which provided partial funding for the research.

The team's work, conducted at the Keck Observatory in Hawaii, was also supported by the National Aeronautics and Space Administration (NASA), the University of California and the Carnegie Institution of Washington.

Marcy, Butler, theoretical astronomer Jack Lissauer of NASA's Ames Research Center, and post-doctoral researcher Eugenio J. Rivera of the University of California Observatories/Lick Observatory at UC Santa Cruz presented their findings today (Monday, June 13) during a press conference at NSF in Arlington, Va.

A paper detailing their results has been submitted to The Astrophysical Journal. Coauthors on the paper are Steven Vogt and Gregory Laughlin of the Lick Observatory at the University of California, Santa Cruz; Debra Fischer of San Francisco State University; and Timothy M. Brown of NSF's National Center for Atmospheric Research in Boulder, Colorado.

Gliese 876 is a small, red star known as an M dwarf--the most common type of star in the galaxy. It is located in the constellation Aquarius, and, at about one-third the mass of the sun, is the smallest star around which planets have been discovered. Butler and Marcy detected the first planet there in 1998; it was a gas giant about twice the mass of Jupiter. Then, in 2001, they reported a second planet, another gas giant about half the mass of Jupiter. The two are in resonant orbits, the outer planet taking 60 days to orbit the star, twice the period of the inner giant planet.

Lissauer and Rivera have been analyzing Keck data on the Gliese 876 system in order to model the unusual motions of the two known planets, and three years ago got an inkling that there might be a smaller, third planet orbiting the star. In fact, if they hadn't taken account of the resonant interaction between the two known planets, they never would have seen the third planet.

"We had a model for the two planets interacting with one another, but when we looked at the difference between the two-planet model and the actual data, we found a signature that could be interpreted as a third planet," Lissauer said.

A three-planet model consistently gave a better fit to the data, added Rivera. "But because the signal from this third planet was not very strong, we were very cautious about announcing a new planet until we had more data," he said.

Recent improvements to the Keck Telescope's high-resolution spectrometer (HIRES) provided crucial new data. Vogt, who designed and built HIRES, worked with the technical staff in the UC Observatories/Lick Observatory Laboratories at the University of California, Santa Cruz, to upgrade the spectrometer's CCD (charge-coupled device) detectors last August.

"It is the higher precision data from the upgraded HIRES that gives us confidence in this result," Butler said.

The team now has convincing data for the planet orbiting very close to the star, at a distance of about 10 stellar radii. That's less than one-tenth the size of Mercury's orbit in our solar system.

"In a two-day orbit , it's about 200 degrees Celsius too hot for liquid water," Butler said. "That tends to lead us to the conclusion that the most probable composition of this thing is like the inner planets of this solar system--a nickel-iron rock, a rocky planet, a terrestrial planet."

"A planet seven and a half times the mass of the Earth could easily hold onto an atmosphere," noted Laughlin, an assistant professor of astronomy at UC Santa Cruz. "It would still be considered a rocky planet, probably with an iron core and a silicate mantle. It could even have a dense steamy water layer. I think what we are seeing here is something that's intermediate between a true terrestrial planet like the Earth and a hot version of the ice giants Uranus and Neptune."

Combined with improved computer software, the new CCD detectors designed by this team for Keck's HIRES spectrometer can now measure the Doppler velocity of a star to within one meter per second--human walking speed--instead of the previous precision of three meters per second. This improved sensitivity will allow the planet-hunting team to detect the gravitational effect of an Earth-like planet within the habitable zone of M dwarf stars like Gliese 876.

"We are pushing a whole new regime at Keck to achieve one meter per second precision, triple our old precision, that should also allow us to see Earth-mass planets around sun-like stars within the next few years," Butler said.

"Our UC Santa Cruz and Lick Observatory team has done an enormous amount of optical and technical and detector work to make the Keck telescope a rocky planet hunter, the best one in the world," Marcy added.

Lissauer also is excited by another feat reported in the paper submitted to the journal. For the first time, he, Rivera and Laughlin have determined the line-of-sight inclination of the orbit of the stellar system solely from the observed Doppler wobble of the star. Using dynamical models of how the two Jupiter-size planets interact, they were able to calculate the masses of the two giant planets from the observed shapes and precession rates of their oval orbits. Precession is the slow turning of the long axis of a planet's elliptical orbit.

They showed that the orbital plane is tilted 40 degrees to our line of sight. This allowed the team to estimate the most likely mass of the third planet as seven and a half Earth masses.

"There's more dynamical modeling involved in this study than any previous study, much more," Lissauer said.

The team plans to continue to observe the star Gliese 876, but is eager to find other terrestrial planets among the 150 or more M dwarfs they observe regularly with Keck.

"So far we find almost no Jupiter-mass planets among the M dwarf stars we've been observing, which suggests that, instead, there is going to be a large population of smaller mass planets," Butler noted.

Telescopes.com
Largest selection and the best prices anywhere in the world. Free shipping on select items. Telescopes.com is the largest dealer of both Meade and Celestron Telescopes. Visit Telescopes.com or call toll free 1-800-303-5873.
Return to Flight crew patch
The official mission STS-114 emblem for space shuttle Discovery's seven astronauts includes a tribute to Columbia.
 Choose your store:
U.S. - U.K. - E.U. - Worldwide

Ares 1-X Patch
The official embroidered patch for the Ares 1-X rocket test flight, is available for purchase.
 U.S. STORE
 WORLDWIDE STORE

Apollo Collage
This beautiful one piece set features the Apollo program emblem surrounded by the individual mission logos.
 U.S. STORE

Expedition 21
The official embroidered patch for the International Space Station Expedition 21 crew is now available from our stores.
 U.S. STORE
 WORLDWIDE STORE

Hubble Patch
The official embroidered patch for mission STS-125, the space shuttle's last planned service call to the Hubble Space Telescope, is available for purchase.
 U.S. STORE
 WORLDWIDE STORE

INDEX | PLUS | NEWS ARCHIVE | LAUNCH SCHEDULE
ASTRONOMY NOW | STORE

ADVERTISE

© 2014 Spaceflight Now Inc.