Spaceflight Now Home



Spaceflight Now +



Premium video content for our Spaceflight Now Plus subscribers.

Discovery's crew
Shuttle Discovery's astronauts pause their training at launch pad 39B to hold an informal news conference near the emergency evacuation bunker. (26min 11sec file)

 Play video:
   Dial-up | Broadband

Astronaut Hall of Fame
The 2005 class of Gordon Fullerton, Joe Allen and Bruce McCandless is inducted into the U.S. Astronaut Hall of Fame at the Saturn 5 Center on April 30. (1hr 24min 55sec file)
 Play video

'Salute to Titan'
This video by Lockheed Martin relives the storied history of the Titan rocket family over the past five decades. (4min 21sec file)
 Play video

Titan history
Footage from that various Titan rocket launches from the 1950s to today is compiled into this movie. (6min 52sec file)
 Play video

Soyuz's fiery re-entry
A camera aboard the space station captured this extraordinary video of the Soyuz TMA-5 capsule plunging back to Earth. The descent module with the crew is seen flying onward while the discarded docking and propulsion modules are ripped apart in the atmosphere. (2min 21sec file)
 Play video

Expedition 10 undocking
The Soyuz TMA-5 capsule undocks from the space station's Zarya module to ferry the Expedition 10 crew back to Earth. (5min 02sec file)
 Play video

Expedition 10 farewell
The Expedition 10 crew says farewell to the new space station crew and heads into the Soyuz capsule in advance of departure. (3min 50sec file)
 Play video

ISS command change
The Expedition 10 crew hands command of the International Space Station to the Expedition 11 crew in this ceremony staged in the Destiny module on April 22. (1min 49sec file)
 Play video

Griffin goes before press
Michael Griffin, NASA's new administrator, holds his first news conference from agency headquarters to discuss shuttle return to flight, exploration plans and Hubble servicing. (46min 44sec file)
 Play video

 Download audio:
   For iPod

Become a subscriber
More video



Rock hounds sleuth rise of Earth's atmosphere
CARNEGIE INSTITUTION NEWS RELEASE
Posted: May 3, 2005

"CSI-like" techniques, used on minerals, are revealing the steps that led to evolution of the atmosphere on Earth.

President of the Mineralogical Society of America, Douglas Rumble, III, of the Carnegie Institution's Geophysical Laboratory, describes the suite of techniques and studies over the last five years that have led to a growing consensus by the scientific community of what happened to produce the protective ozone layer and atmosphere on our planet.

His landmark paper on the subject appears in the May/June American Mineralogist.

"Rocks, fossils, and other natural relics hold clues to ancient environments in the form of different ratios of isotopes--atomic variants of elements with the same number of protons but different numbers of neutrons," explained Rumble.

"Seawater, rain water, oxygen, and ozone, for instance, all have different ratios, or fingerprints, of the oxygen isotopes 16O, 17O, and 18O. Weathering, ground water, and direct deposition of atmospheric aerosols change the ratios of the isotopes in a rock revealing a lot about the past climate."

Rumble's paper describes how geochemists, mineralogists, and petrologists are studying anomalies of isotopes of oxygen and sulfur to piece together what happened to our atmosphere from about 3.9 billion years ago, when the crust of our planet was just forming and there was no oxygen in the atmosphere, to a primitive oxygenated world 2.3 billion years ago, and then to the present.

The detective work involves a pantheon of scientists who have analyzed surface minerals from all over the globe, used rockets and balloons to sample the stratosphere, collected and studied ice cores from Antarctica, conducted lab experiments, and run mathematical models.

The synthesis from the different fields and techniques points to ultraviolet (UV) light from the Sun as an important driving force in atmospheric evolution.

Solar UV photons break up molecular oxygen (O2) to produced ozone (O3) leaving a tell-tale isotopic signature of excess 17O. The ozone layer began to form as the atmosphere gained oxygen, and has since shielded our planet from harmful solar rays and made life possible on Earth's surface.

The discovery of isotope anomalies, where none were previously suspected, adds a new tool to research on the relationships between shifts in atmospheric chemistry and climate change. Detailed studies of polar-ice cores and exposed deposits in Antarctic dry valleys may improve our understanding of the history of the ozone hole.

Funding for this work came from the following institutions: NASA, The NASA Astrobiology Institute, The National Science Foundation, The Jet Propulsion Laboratory, and the Carnegie Institution of Washington.

The Carnegie Institution of Washington (www.CarnegieInstitution.org) has been a pioneering force in basic scientific research since 1902. It is a private, nonprofit organization with six research departments throughout the U.S. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.