Spaceflight Now Home



Spaceflight Now +



Premium video content for our Spaceflight Now Plus subscribers.

Launch of Deep Impact!
A Boeing Delta 2 rocket blasts off from Cape Canaveral carrying NASA's comet-smashing probe called Deep Impact. This extended clip follows the mission through second stage ignition and jettison of the rocket's nose cone. (5min 37sec file)
 Play video

Press Site view
A camera located at Cape Canaveral's Press Site 1 location offers this view of the Delta rocket's ascent. (1min 24sec file)
 Play video

Cocoa Beach
A Boeing Delta 2 rocket blasts off from Cape Canaveral carrying NASA's comet-smashing probe called Deep Impact. This extended clip follows the mission through second stage ignition and jettison of the rocket's nose cone. (5min 37sec file)
 Play video

Playalinda Beach
A Boeing Delta 2 rocket blasts off from Cape Canaveral carrying NASA's comet-smashing probe called Deep Impact. This extended clip follows the mission through second stage ignition and jettison of the rocket's nose cone. (5min 37sec file)
 Play video

Tower rollback
The mobile service tower is rolled back from the Boeing Delta 2 rocket, exposing the vehicle at launch pad 17B just before daybreak. (3min 21sec file)
 Play video

Rocket preps
Assembly of the Boeing Delta 2 rocket at launch pad 17B and mating of the Deep Impact spacecraft is presented in this video package with expert narration. (6min 12sec file)
 Play video

Spacecraft campaign
The pre-launch campaign of Deep Impact at Cape Canaveral is presented in this video package with expert narration by a spacecraft team member. (5min 32sec file)
 Play video

Become a subscriber
More video



NewsAlert



Sign up for our NewsAlert service and have the latest news in astronomy and space e-mailed direct to your desktop.

Enter your e-mail address:

Privacy note: your e-mail address will not be used for any other purpose.



Mars instrument to assess astronaut radiation risk
SOUTHWEST RESEARCH INSTITUTE NEWS RELEASE
Posted: January 18, 2005

An instrument that will characterize the radiation at the surface of Mars has been selected by NASA for the Mars Science Laboratory (MSL). The mission, part of NASA's Mars Exploration Program, will explore the viability of the surface of the red planet as a potential habitat for past or present life.

For this purpose, Southwest Research Institute (SwRI) is developing the Radiation Assessment Detector, or RAD, to characterize the broad spectrum of radiation at the surface. The investigation will determine the radiation hazards faced by astronauts on Mars.

"Understanding the space radiation environment is the single most important challenge to preparing for future human exploration of Mars," says Dr. Donald M. Hassler, RAD principal investigator and section manager in the SwRI Space Studies Department. "We need to understand the radiation input at the Martian surface so we can design shelters, habitats and spacesuits with sufficient shielding to protect astronauts."

"With this instrument we will perform the first-ever measurements of cosmic rays on the surface of another planet," says Dr. Arik Posner, RAD project scientist and researcher in the SwRI Space Science and Engineering Division. "The data will help us to better understand the unique Martian radiation environment and its influence on past and present life, and is thus essential for the Space Exploration Initiative."

The Exploration Systems Mission Directorate at NASA Headquarters is funding the RAD development.

Seven other instruments were also selected for the MSL, including a mast camera, a Mars hand lens imager and a Mars descent imager, all led by Malin Space Science Systems; a chemistry and micro-imaging sensor, led by Los Alamos; an alpha-particle-X-ray-spectrometer, led by the Max-Planck-Institute for Chemistry; an X-ray diffraction and fluorescence instrument, led by the NASA Ames Research Center; and a sample analysis instrument, led by the NASA Goddard Space Flight Center. MSL will also carry a pulsed neutron source and detector for measuring hydrogen, provided by the Russian Federal Space Agency. The project will also include a meteorological package and an ultraviolet sensor provided by the Spanish Ministry of Education and Science.

The Mars Science Laboratory, scheduled for a 2009 launch, will operate under its own power for a service life of one Mars year (approximately two Earth years). The Jet Propulsion Laboratory in Pasadena, Calif., manages MSL for the NASA's Science Mission Directorate.