Spaceflight Now Home



Spaceflight Now +



Premium video content for our Spaceflight Now Plus subscribers.

Hurricane Ivan
Cameras on the International Space Station see Hurricane Ivan as the orbiting complex flies over the powerful storm. (3min 05sec file)
 Play video

Friday's Genesis update
On Friday, Sept. 10, officials hold a news conference from Utah to update reporters on the recovery operations to salvage the Genesis sample return mission. (44min 47sec file)
 Play audio

Genesis recovered
Workers recover the Genesis solar wind samples from the impact crater and take the equipment into a facility for examination. (2min 08sec file)
 Play video

Tour of KSC hurricane damage
Martin Wilson, manager of the Thermal Protection System Facility, gives a tour of the highly damaged building at Kennedy Space Center in the wake of Hurricane Frances. (2min 31sec file)
 Play video

Inside the VAB
Go inside Kennedy Space Center's hurricane-battered Vehicle Assembly Building and also see the damage to the 52-story tall facility's roof. (2min 51sec file)
 Play video

Post-impact news briefing
Officials hold a post-landing news conference in Utah a couple hours after Genesis returned to Earth on Sept. 8. (40min 52sec file)
 Play video

Capsule first spotted
Powerful tracking cameras spot the Genesis capsule for the first time a couple hundred thousand feet above Earth, prompting applause in the control centers. But just moments later, that joy turned to heartbreak. (1min 02sec file)
 Play video

Genesis crash lands
The Genesis sample return capsule tumbles through the sky and impacts the desert floor in Utah after its speed-slowing chute and parafoil failed to deploy for a mid-air recovery by a helicopter. (2min 29sec file)
 Play video

Slow-motion
This slow-motion video shows the Genesis capsule slamming into the ground. (1min 06sec file)
 Play video

Aerial views of crater
Aerial views show the Genesis capsule half buried in the Utah desert floor after its landing system suffered a failure. (1min 53sec file)
 Play video

Recovery helicopters
The primary and backup recovery helicopters take off with escort from a Blackhawk in preparation for the mid-air retrieval of Genesis. (1min 01sec file)
 Play video

The original plan
Animation shows how the Genesis spacecraft was supposed to return. Expert narration provided by JPL entry, descent and landing expert Rob Manning. (5min 29sec file)
 Play video

Tuesday's hurricane news briefing
The Kennedy Space Center director and 45th Space Wing commander from Cape Canaveral Air Force Station hold a news conference Tuesday to describe damage from Hurricane Frances. (46min 15sec file)
 Play audio

Footage of KSC damage
This movie takes you on a tour of hurricane damage to Kennedy Space Center's Vehicle Assembly Building, shuttle tile manufacturing facility and press site. (3min 11sec file)
 Play video

Become a subscriber
More video



NewsAlert



Sign up for our NewsAlert service and have the latest news in astronomy and space e-mailed direct to your desktop.

Enter your e-mail address:

Privacy note: your e-mail address will not be used for any other purpose.



Glimpse of exotic matter in a neutron star
UNIVERSITY OF ARIZONA NEWS RELEASE
Posted: September 14, 2004

Scientists have obtained their best measurement yet of the size and contents of a neutron star, an ultra-dense object containing the strangest and rarest matter in the universe.


A computer artist's concept illustrates a thermonuclear burst consuming an entire neutron star. Credit: NASA
 
The measurement may lead to a better understanding of nature's building blocks -- protons, neutrons and their constituent quarks -- as they are compressed inside the neutron star to a density trillions of times greater than on Earth.

Tod Strohmayer of NASA Goddard Space Flight Center in Greenbelt, Md., and Adam Villarreal, a physics graduate student at the University of Arizona, present their results today at the American Astronomical Society's High Energy Astrophysics Division meeting in New Orleans.

Strohmayer and Villarreal estimate that the neutron star is about 1.8 times as massive as the sun -- slightly more massive than expected -- with a radius of about 7 miles (11.5 kilometers). It is part of a binary star system named EXO 0748-676, located about 30,000 light-years away in the southern sky constellation Volans, or Flying Fish.

The scientists used NASA Rossi X-ray Timing Explorer data to measure how fast the neutron star spins. Spin-rate was the unknown factor needed to estimate the neutron star's size and total mass. Their results agree with a mass-to-radius ratio estimate made from European Space Agency (ESA) X-ray satellite observations in 2002.

The long-sought mass-radius ratio defines the neutron star's internal density and pressure relationship, the so-called equation of state.

"Astrophysicists have been trying for decades to constrain the equation of state of neutron star matter," Villarreal said. "Our results hold great promise for accomplishing this goal. It looks like equations of state which predict either very large or very small stars are nearly excluded."

Knowing a neutron star's equation of state allows physicists to determine what kind of matter can exist within that star. Scientists need to understand such exotic matter to test theories describing the fundamental nature of matter and energy, and the strength of nuclear interactions.

"We would really like to get our hands on the stuff at the center of a neutron star," said Strohmayer. "But since we can't do that, this is about the next best thing. A neutron star is a cosmic laboratory and provides the only opportunity to see the effects of matter compressed to such a degree."

A neutron star is the core remnant of a star once bigger than the sun. The interior contains matter under forces that perhaps existed at the moment of the Big Bang but which cannot be duplicated on Earth.

In this system, gas from a "normal" companion star, attracted by gravity, plunges onto the neutron star. This triggers thermonuclear explosions on the neutron star surface that illuminate the region. Such bursts often reveal the spin rate of the neutron star through a flickering in the X-ray emission, called a burst oscillation.

Strohmayer and Villarreal detected a 45-hertz burst oscillation frequency, which corresponds to a neutron star spin rate of 45 times per second. This is a leisurely pace for neutron stars, which are often seen spinning at more than 600 times per second.

They next capitalized on EXO 0748-676 observations with ESA's XMM-Newton satellite, led by Jean Cottam of NASA Goddard in 2002. Cottam's team detected spectral lines emitted by hot gas, lines resembling those of a cardiogram.

These lines had two features. First, they were Doppler shifted. This means the energy detected was an average of the light spinning around the neutron star, moving away from us and then towards us. Second, the lines were gravitationally redshifted. This means that gravity pulled on the light as it tried to escape the region, stealing a bit of its energy. The gravitational redshift measurement offered the first estimate of a mass-radius ratio, because the degree of redshifting depends on the mass and radius of the neutron star.

Strohmayer and Villarreal determined that the 45-hertz frequency and the observed line widths from Doppler shifting are consistent with a neutron star radius between 9.5 and 15 kilometers (between about 6 and 9 miles) with the best estimate at 11.5 kilometers (about 7 miles). They used the radius and the mass-radius ratio to calculate the neutron star's mass between 1.5 and 2.3 solar masses, with the best estimate at around 1.8 solar masses.

The result supports the theory that matter in the neutron star in EXO 0748-676 is packed so tightly that almost all protons and electrons are squeezed together to become neutrons, which swirl about as a superfluid, a liquid that flows without friction. Yet the matter isn't packed so tightly that quarks are liberated, a so-called quark star.

"Perhaps most exciting is that we now have an observational technique that should allow us to measure the mass-radius relations in other neutron stars," Villarrael said.

A proposed NASA mission called the Constellation X-ray Observatory would have the ability to make such measurements, but with much greater precision, for a number of neutron star systems.

Ares 1-X Patch
The official embroidered patch for the Ares 1-X rocket test flight, is available for purchase.
 U.S. STORE
 WORLDWIDE STORE

Apollo Collage
This beautiful one piece set features the Apollo program emblem surrounded by the individual mission logos.
 U.S. STORE

Expedition 21
The official embroidered patch for the International Space Station Expedition 21 crew is now available from our stores.
 U.S. STORE
 WORLDWIDE STORE

Hubble Patch
The official embroidered patch for mission STS-125, the space shuttle's last planned service call to the Hubble Space Telescope, is available for purchase.
 U.S. STORE
 WORLDWIDE STORE

INDEX | PLUS | NEWS ARCHIVE | LAUNCH SCHEDULE
ASTRONOMY NOW | STORE

ADVERTISE

© 2014 Spaceflight Now Inc.