Spaceflight Now Home



Spaceflight Now +



Premium video content for our Spaceflight Now Plus subscribers.

Titan 4 rollout
The Titan 4 rocket emerges from the Solid Motor Assembly and Readiness Facility at Cape Canaveral at about 5:45 a.m. August 25 for rollout to the Complex 40 pad. (3min 58sec file)
 Play video

On the launch pad
Riding on its mobile launching platform, the Titan 4 rocket arrives at the pad just before sunrise. (5min 22sec file)
 Play video

Sunrise over Titan 4
As dawn breaks over Cape Canaveral, these daylight scenes show the Titan 4 on Complex 40 in preparation for the final Florida launch of this heavy-lift rocket. (2min 11sec file)
 Play video

Shuttle engine tested
One of the three liquid-fueled main engines that will power Discovery into orbit during the space shuttle return-to-flight mission is test-fired at Stennis Space Center. (2min 57sec file)
 Play video

Delta 4-Heavy preview
Preview what a Boeing Delta 4 rocket launch will be like with this animation package of a "Heavy" configuration vehicle. (1min 41sec file)
 Play video

Rover's stuck RAT
A problem with the Opportunity rover's Rock Abrasion Tool is explained in detailed by JPL mission manager Chris Salvo. (4min 14sec file)
 Play video

New water clues
Spirit's examination of rock outcropping at Gusev Crater has yielded new clues about the history of water there, as explained by Doug Ming, a rover science team member from Johnson Space Center. (5min 59sec file)
 Play video

Spirit on a hill
A stunning new picture from the Mars rover Spirit taken from the hillside shows the sweeping plains of Gusev and the crater's rim on the distant horizon. Expert narration is provided by Steve Squyres, the rover lead scientist. (1min 22sec file)
 Play video

Update on Opportunity
Steve Squyres, the rover lead scientist, descibes Opportunity's ongoing work inside Endurance Crater and narrates new pictures that includes clouds moving across the Martian sky. (5min 50sec file)
 Play video

Latest Mars briefing
Scientists and mission officials explain the latest findings and exploration by the Spirit and Opportunity rovers during this news conference on August 18. (49min 40sec file)
 Play video

Ship docks to station
The Russian Progress 15P resupply ship makes a fully automated rendezvous and docking with the International Space Station. An external camera on the craft provides this view of the final approach to the aft port of the Zvezda service module. (3min 49sec file)
 Play video

Become a subscriber
More video



NewsAlert



Sign up for our NewsAlert service and have the latest news in astronomy and space e-mailed direct to your desktop.

Enter your e-mail address:

Privacy note: your e-mail address will not be used for any other purpose.



Odyssey begins overtime after successful mission
NASA NEWS RELEASE
Posted: August 25, 2004

NASA's Mars Odyssey orbiter begins working overtime today after completing a prime mission that discovered vast supplies of frozen water, ran a safety check for future astronauts, and mapped surface textures and minerals all over Mars, among other feats.

"Odyssey has accomplished all of its mission-success criteria," said Dr. Philip Varghese, project manager for Odyssey at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The spacecraft has been examining Mars in detail since February 2002, more than a full Mars year of about 23 Earth months. NASA has approved an extended mission through September 2006.

"This extension gives us another martian year to build on what we have already learned," said JPL's Dr. Jeff Plaut, project scientist for Odyssey. "One goal is to look for climate change. During the prime mission we tracked dramatic seasonal changes, such as the comings and goings of polar ice, clouds and dust storms. Now, we have begun watching for year-to-year differences at the same time of year."

The extension will also continue Odyssey's support for other Mars missions. About 85 percent of images and other data from NASA's twin Mars rovers, Spirit and Opportunity, have reached Earth via communications relay by Odyssey, which receives transmissions from both rovers every day. The orbiter helped analyze potential landing sites for the rovers and is doing the same for NASA's Phoenix mission, scheduled to land on Mars in 2008. Plans call for Odyssey to aid NASA's Mars Reconnaissance Orbiter, due to reach Mars in March 2006, by monitoring atmospheric conditions during months when the newly arrived orbiter uses calculated dips into the atmosphere to alter its orbit into the desired shape.

Odyssey was launched April 7, 2001, and used the same dips into the atmosphere, known as aerobraking, to shape its orbit during the initial months after it reached Mars on Oct. 23, 2001. The spacecraft carries three research systems: a camera system made up of infrared and visible-light sensors; a spectrometer suite with a gamma ray spectrometer, a neutron spectrometer and a high-energy neutron detector; and a radiation environment detector.

Less than a month after the science mapping campaign began, the team announced a major discovery. The gamma ray and neutron instruments detected copious hydrogen just under Mars' surface in the planet's south polar region. Researchers interpret the hydrogen as frozen water -- enough within about a meter (3 feet) of the surface, if the ice were melted, to fill Lake Michigan a couple times.

Here are a few of Odyssey's other important accomplishments so far:

  • As summer came to northern Mars and the north polar covering of frozen carbon dioxide shrank, Odyssey found abundant frozen water in the north, too.

  • Infrared mapping showed that a mineral called olivine is widespread. This indicated the environment has been quite dry, because water exposure alters olivine into other minerals.

  • Findings indicated the amount of frozen water in some relatively warm regions on Mars is too great to be in equilibrium with the atmosphere, suggesting that Mars may be going through a period of climate change. Features visible near small, young gullies in some Odyssey images may be slowly melting snowpacks left over from a martian ice age.

  • The first experiment sent to Mars specifically in preparation for human missions found that radiation levels around Mars, from solar flares and cosmic rays, are two to three times higher than around Earth.

  • Odyssey's camera system obtained the most detailed complete global maps of Mars ever, with daytime and nighttime infrared images at a resolution of 100 meters (328 feet).
"We've accomplished everything we set out to do, and more," said JPL's Robert Mase, Odyssey mission manager. Although an unusually powerful solar flare in October 2003 knocked out the radiation environment instrument, Odyssey is otherwise in excellent health. The spacecraft has enough fuel onboard to keep operating through this decade and the next at current consumption rates. The mission extension, with a budget of $35 million, essentially doubles the science payoff from Odyssey for less than one-eighth of the mission's original $297 million cost.

JPL, a division of the California Institute of Technology, Pasadena, manages Mars Odyssey for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, built and operates the spacecraft. Investigators at Arizona State University, Tempe; University of Arizona, Tucson; NASA's Johnson Space Center, Houston; the Russian Aviation and Space Agency, Moscow; and Los Alamos National Laboratory, Los Alamos, N.M., built and operate Odyssey science instruments.