Spaceflight Now Home



Spaceflight Now +



Premium video content for our Spaceflight Now Plus subscribers.

Burn ignition!
Mission control erupts in applause as communications from Cassini confirm the orbit insertion burn has begun. (60sec file)
 Play video

Burn completed
Signals from Cassini announce the conclusion of the Saturn orbit insertion burn, confirming the spacecraft has arrived at the ringed planet. (2min 15sec file)
 Play video

Post-arrival briefing
Mission officials hold a post-orbit insertion burn news conference at 1 a.m. EDT July 1 to discuss Cassini's successful arrival at Saturn. (25min 27sec file)
 Play video

International cooperation
Officials from the U.S., European and Italian space agencies discuss the international cooperation in the Cassini mission and future exploration projects during this news conference from 2 p.m. EDT June 30. (19min 35sec file)
 Play video

'Ring-side' chat
This informal "ring-side chat" from 5 p.m. EDT June 30 discusses the Cassini mission to Saturn and the future of space exploration. (49min 20sec file)
 Play video

Become a subscriber
More video



NewsAlert



Sign up for our NewsAlert service and have the latest news in astronomy and space e-mailed direct to your desktop.

Enter your e-mail address:

Privacy note: your e-mail address will not be used for any other purpose.



NASA creates first 3-D view of solar eruptions
NASA-GSFC NEWS RELEASE
Posted: July 4, 2004

NASA-funded scientists have created the first three-dimensional (3-D) view of massive solar eruptions called Coronal Mass Ejections (CMEs). The result is critical for a complete understanding of CMEs, which, when directed at Earth, may disrupt radio communications, satellites and power systems.


This image is a view of a Coronal Mass Ejection (CME) in three dimensions. The Sun is the orange sphere in the middle of the image, and the CME appears in false color as the white areas. This CME was launched from the Sun on June 29, 1999 and was directed toward Earth. Researchers analyzed ordinary two-dimensional images from the Solar and Heliospheric Observatory (SOHO) spacecraft in a new way to yield the 3D images. Credit: NASA, the European Space Agency, Tom Moran, Tom Bridgman
 
The researchers analyzed ordinary two-dimensional images from the joint NASA/European Space Agency Solar and Heliospheric Observatory (SOHO) spacecraft in a new way to yield the 3-D images.

"We need to see the structure of CMEs in three dimensions to fully understand their origin and the process that launches them from the sun," said Dr. Thomas Moran of the Catholic University of America, Washington. "Views in three dimensions will help to better predict CME arrival times and impact angles at the Earth," he said.

Moran developed the analysis technique. He is lead author of a paper on this research published today in Science. Dr. Joseph Davila of NASA's Goddard Space Flight Center, Greenbelt, Md., is co-author of the paper.

CMEs are among the most powerful eruptions in the solar system, with billions of tons of electrified gas being blasted from the sun's atmosphere into space at millions of miles (kilometers) per hour.

Researchers believe CMEs are launched when solar magnetic fields become strained and suddenly "snap" to a new configuration, like a rubber band that has been twisted to the breaking point. Complex and distorted magnetic fields travel with the CME cloud and sometimes interact with the Earth's own magnetic field to pour tremendous amounts of energy into the space near the planet.

The magnetic fields are invisible, but because the CME gas is electrified (a plasma), it spirals around the magnetic fields, tracing out their shapes. A view of the CME gas in 3- D therefore gives scientists valuable information on the structure and behavior of the magnetic fields powering it.

The new analysis technique for SOHO data determines the three-dimensional structure of a CME. A sequence of three SOHO Large Angle and Spectrometric Coronagraph (LASCO) images is taken through polarizers at separate angles. The ratio of polarized-to-unpolarized brightness at each pixel is then computed. Based on the way light scatters off electrically charged particles (electrons) in CME plasma, light from the structures at angles closer to the plane-of-the-sun will be more polarized than light from those at angles farther from the plane.

The distance from the plane is computed from the measurements, giving the three-dimensional coordinates of the mean scattering position to construct a view in 3-D. (Light which has an electric field oriented randomly in all directions is unpolarized, while light with an electric field oriented in just one direction is polarized.)

With the technique, the team has confirmed that the structure of Earth-directed (halo) CMEs is an expanding arcade of loops, rather than a bubble or rope-like structure. Although the CME eventually disconnects from the sun, the team also discovered the loops remained connected to the source region for an unexpectedly long time, for at least as long as the CME was visible to the SOHO instrument.

The team learned the technique was previously independently developed and used to study relatively static structures in the solar atmosphere during total solar eclipses. The team believes its method will complement the upcoming Solar Terrestrial Relations Observatory (STEREO) mission. The mission, scheduled for launch in February 2006, will use two widely separated spacecraft to construct 3-D views of CMEs by combining images from the two different vantage points of the twin spacecraft.