Spaceflight Now Home



NewsAlert



Sign up for our NewsAlert service and have the latest news in astronomy and space e-mailed direct to your desktop.

Enter your e-mail address:

Privacy note: your e-mail address will not be used for any other purpose.



Spaceflight Now +



Subscribe to Spaceflight Now Plus for access to our extensive video collections!
How do I sign up?
Video archive

Phoenix update

Scientists report on the progress of the Phoenix lander exploring the northern plains of Mars during this July 31 update.

 Briefing | Panorama

Jason 2 launch

A ULA Delta 2 rocket launched the Jason 2 oceanography satellite from Vandenberg Air Force Base on June 20.

 Full Coverage

Jason 2 preview

The joint American and European satellite project called Jason 2 will monitor global seal levels.

 Mission | Science

STS-124 space shuttle mission coverage

Extensive video collection covering shuttle Discovery's mission to deliver the Japanese Kibo science lab to the station is available in the archives.

 Full Coverage

Phoenix lands on Mars

The Phoenix spacecraft arrived at Mars on May 25, safely landing on the northern plains to examine the soil and water ice.

 Full Coverage
STS-82: In review

The second servicing of the Hubble Space Telescope was accomplished in Feb. 1997 when the shuttle astronauts replaced a pair of instruments and other internal equipment on the observatory.

 Play

STS-81: In review

The fifth shuttle docking mission to the space station Mir launched astronaut Jerry Linenger to begin his long-duration stay on the complex and brought John Blaha back to Earth.

 Play

Become a subscriber
More video



Phoenix microscope takes first image of Martian dust
NASA/JPL NEWS RELEASE
Posted: August 15, 2008

TUCSON, Ariz. - NASA's Phoenix Mars Lander has taken the first-ever image of a single particle of Mars' ubiquitous dust, using its atomic force microscope.

The particle -- shown at higher magnification than anything ever seen from another world -- is a rounded particle about one micrometer, or one millionth of a meter, across. It is a speck of the dust that cloaks Mars. Such dust particles color the Martian sky pink, feed storms that regularly envelop the planet and produce Mars' distinctive red soil.


The image on the upper left is from Phoenix's Optical Microscope after a sample informally called "Sorceress." A 3D representation of the same sample is on the right, as seen by the Atomic Force Microscope. This is 100 times greater magnification than the view from the Optical Microscope, and the most highly magnified image ever seen from another world. Credit: NASA/JPL-Caltech/University of Arizona/University of Neuchatel
 
"This is the first picture of a clay-sized particle on Mars, and the size agrees with predictions from the colors seen in sunsets on the Red Planet," said Phoenix co-investigator Urs Staufer of the University of Neuchatel, Switzerland, who leads a Swiss consortium that made the microscope.

"Taking this image required the highest resolution microscope operated off Earth and a specially designed substrate to hold the Martian dust," said Tom Pike, Phoenix science team member from Imperial College London. "We always knew it was going to be technically very challenging to image particles this small."

It took a very long time, roughly a dozen years, to develop the device that is operating in a polar region on a planet now about 350 million kilometers or 220 million miles away.

The atomic force microscope maps the shape of particles in three dimensions by scanning them with a sharp tip at the end of a spring. During the scan, invisibly fine particles are held by a series of pits etched into a substrate microfabricated from a silicon wafer. Pike's group at Imperial College produced these silicon microdiscs.

The atomic force microscope can detail the shapes of particles as small as about 100 nanometers, about one one-thousandth the width of a human hair. That is about 100 times greater magnification than seen with Phoenix's optical microscope, which made its first images of Martian soil about two months ago. Until now, Phoenix's optical microscope held the record for producing the most highly magnified images to come from another planet.

"I'm delighted that this microscope is producing images that will help us understand Mars at the highest detail ever," Staufer said. "This is proof of the microscope's potential. We are now ready to start doing scientific experiments that will add a new dimension to measurements being made by other Phoenix lander instruments."

"After this first success, we're now working on building up a portrait gallery of the dust on Mars," Pike added.

Mars' ultra-fine dust is the medium that actively links gases in the Martian atmosphere to processes in Martian soil, so it is critically important to understanding Mars' environment, the researchers said.

The particle seen in the atomic force microscope image was part of a sample scooped by the robotic arm from the "Snow White" trench and delivered to Phoenix's microscope station in early July. The microscope station includes the optical microscope, the atomic force microscope and the sample delivery wheel. It is part of a suite of tools called Phoenix's Microscopy, Electrochemistry and Conductivity Analyzer.

The Phoenix mission is led by Peter Smith from the University of Arizona with project management at NASA's Jet Propulsion Laboratory, Pasadena, Calif., and development partnership at Lockheed Martin, Denver. International contributions come from the Canadian Space Agency; the University of Neuchatel; the universities of Copenhagen and Aarhus in Denmark; the Max Planck Institute in Germany; and the Finnish Meteorological Institute. The California Institute of Technology in Pasadena manages JPL for NASA.

Phoenix mission patch