Spaceflight Now Home





The Mission




Mission: Mars Science Lab
Rocket: Atlas 5 (AV-028)
Launch: Nov. 26, 2011 @ 10:02am EST (1502 GMT)
Landing: Aug. 6, 2012 @ 1:32am EDT (0532 GMT)
Site: Base of Mount Sharp in Gale Crater

Mission Status Center

Landing preview story

Sky crane overview

Communications plan

Landing press kit

NASA launch kit

MSL fact sheet


Our launch journal

Launch photo gallery

Rollout photo gallery

Video: HDTV archive

Video: Standard def





Mission Reports




For 12 years, Spaceflight Now has been providing unrivaled coverage of U.S. space launches. Comprehensive reports and voluminous amounts of video are available in our archives.
Space Shuttle
Atlas | Delta | Pegasus
Minotaur | Taurus | Falcon
Titan



NewsAlert



Sign up for our NewsAlert service and have the latest space news e-mailed direct to your desktop.

Enter your e-mail address:

Privacy note: your e-mail address will not be used for any other purpose.



Advertisement






Space Books






Radiation shields, new engines mandatory for Mars
BY STEPHEN CLARK
SPACEFLIGHT NOW

Posted: May 30, 2013


A detector on NASA's Curiosity rover has confirmed previous research findings on the hazards of space radiation on the way to Mars, scientists announced Thursday, and future astronauts making the trip will need protection from the danger.


Artist's concept of the Mars Science Laboratory approaching Mars. Credit: NASA/JPL-Caltech
 
The Mars rover's radiation-detecting instrument, called RAD, collected data on the mission's eight-month cruise to the red planet in 2011 and 2012, verifying computer models predicting radiation levels on the way to Mars are several hundred times higher than the dose humans receive on Earth.

Nestled deep inside a heat shield and aerodynamic shell - not too different than astronauts inside a space capsule - the rover's detector still picked up particles from a harmful flow of radiation from the sun and galactic sources.

"This cruise data is critical to the understanding of the impacts of galactic cosmic rays and solar particle events inside a platform similar to the vehicle we're developing for human exploration missions," said Eddie Semones, a spaceflight radiation health officer at NASA's Johnson Space Center in Houston.

Against a near-steady stream of galactic cosmic rays streaming into the solar system from supernova explosions and other sources across the galaxy, Curiosity encountered five spikes in another type of radiation called solar energetic particles, which blow outward from the sun during solar flares and coronal mass ejections.

Semones said the radiation data from the Mars rover confirmed estimates based on models and information from other missions.

"We found during the cruise that galactic cosmic rays were averaging 1.8 milliSieverts per day throughout," said Cary Zeitlin, principal scientist from the Southwest Research Institute. "That's actually a value that's very much in line with earlier data from Apollo and Skylab."

Scientists measure radiation in units called Sieverts. According to Semones, exposure to 1 Sievert of radiation raises a person's risk of developing fatal cancer in their lifetime by 5 percent.

In six months, Curiosity's RAD instrument detected 330 milliSieverts of cosmic radiation. On the International Space Station, which is clad in polyethylene shielding and flies below Earth's radiation belts, astronauts typically see about 100 milliSieverts in a six-month rotation.

The figures don't include solar energetic particles, which accounted for about 5 percent of the radiation detected by the rover on the cruise to Mars. During periods of elevated solar activity, astronauts could be exposed to more solar radiation, Zeitlin said.


This graphic compares the radiation dose equivalent for several types of experiences, including a calculation for a trip from Earth to Mars based on measurements made by the Radiation Assessment Detector instrument shielded inside NASA's Mars Science Laboratory spacecraft during the flight from Earth to Mars in 2011 and 2012. The vertical scale is logarithmic; each labeled value is 10 times greater than the next lowest one. Credit: NASA/JPL-Caltech/SwRI
 
"The radiation environment in deep space is several hundred times more intense than it is on Earth, and that's even inside a shielded spacecraft, such as MSL, where we made our measurements," Zeitlin said.

According to Zeitlin, radiation levels detected by Curiosity - adjusted to gauge their impact on human issues - are equivalent to the dosage received in abdominal CT scans every five or six days.

Over the course of a 500-day Mars mission, Semones said most astronauts would exceed NASA's health standard, which limits an individual's radiation exposure to levels that would cause no more than a 3 percent increase in the risk of fatal cancer.

"We're looking at that 3 percent standard and its applicability on exploration-type missions," Semones said.

The radiation results from the rover's cruise to Mars are published in Friday's issue of Science.

Curiosity's RAD instrument continues collecting daily measurements since its landing on Mars in August 2012. Scientists are using the data to see what radiation levels astronauts would encounter on the planet's surface on landing missions.

Engineers and scientists will use the rover's radiation measurements in development of spacecraft to carry astronauts beyond low Earth orbit. Semones said the data are applicable to NASA's asteroid capture mission and manned trips to the vicinity of the moon, which are planned to begin in 2021.

"The RAD data will help us to design deep space habitats in which astronauts would live on the way to Mars, and it will help us to improve radiation shielding to protect them from the harmful effects of space radiation," said Chris Moore, deputy director of advanced exploration systems at NASA.

For transient events such as solar storms, which temporarily raise radiation levels, NASA could provide 'storm shelters' to house astronauts and protect against radiation until the threat passes, Moore said.


This artist's concept compares the Mars Science Laboratory cruise stage and heat shield with the Orion spacecraft, which is being developed to carry astronauts into deep space. Credit: NASA/JPL-Caltech/JSC
 
Astronaut habitats will need more permanent shielding against galactic cosmic rays. Moore said water in the walls of space modules would help blunt radiation, or astronauts could store hydrogen-rich food and supplies around their living quarters as a shield.

But efforts to protect astronauts on trips to Mars will not stop there.

According to NASA, advanced propulsion systems must be developed to make more speedy journeys possible because the type of shielding necessary to protect against cosmic radiation - several meters thick, Semones said - is impractical due to the size and mass limitations of spacecraft and launch vehicles.

"You need both," Semones said, referring to shielding and advanced propulsion. "You need to get there faster to reduce the impact of galactic cosmic rays, but you also need to have local shielding on-board to eliminate the effects of solar particles."

Moore said NASA is working on solar-electric propulsion, which uses electricity to accelerate ions and generate low, but sustained, thrust, as part of the agency's technology development for deep space exploration, including NASA's proposed initiative to capture and study an asteroid.

"But to get really fast trip times and cut down on the radiation exposure, we would probably need nuclear thermal propulsion," Moore said. "We're working with U.S. Department of Energy to look at various types of fuel elements for these rockets. But it's a long-range technology development activity, and it will probably be many years before that is ready."

According to Moore, nuclear propulsion could cut the one-way transit time from Earth to Mars to about 180 days.

Spaceflight Now Plus
Additional coverage for subscribers:
VIDEO: THE MARS SCIENCE LAB FULL LAUNCH EXPERIENCE PLAY | HI-DEF
VIDEO: ATLAS 5 ROCKET LAUNCHES MARS SCIENCE LAB PLAY | HI-DEF
VIDEO: ONBOARD CAMERA VIEW OF NOSE CONE JETTISON PLAY | HI-DEF
VIDEO: ONBOARD CAMERA VIEW OF THE STAGING EVENT PLAY | HI-DEF
VIDEO: ONBOARD VIEW OF ROCKET RELEASING MSL PLAY
VIDEO: LAUNCH DECLARED A SUCCESS PLAY

VIDEO: LAUNCH REPLAYS: OUR VIEW OF LIFTOFF PLAY | HI-DEF
VIDEO: LAUNCH REPLAYS: VAB ROOF PLAY | HI-DEF
VIDEO: LAUNCH REPLAYS: PATRICK AFB PLAY | HI-DEF
VIDEO: LAUNCH REPLAYS: SOUTH OF THE PAD PLAY | HI-DEF
VIDEO: LAUNCH REPLAYS: THE BEACH TRACKER PLAY | HI-DEF
VIDEO: LAUNCH REPLAYS: SHUTTLE PAD CAMERA PLAY | HI-DEF
VIDEO: LAUNCH REPLAYS: SHUTTLE WATER TOWER PLAY | HI-DEF
VIDEO: LAUNCH REPLAYS: TRACKER WEST OF THE PAD PLAY | HI-DEF
VIDEO: LAUNCH REPLAYS: CLOSE-UP ON UMBILICALS PLAY | HI-DEF
VIDEO: LAUNCH REPLAYS: COMPLEX 41 VIF PLAY | HI-DEF
VIDEO: LAUNCH REPLAYS: THE PRESS SITE PLAY | HI-DEF

VIDEO: PRE-LAUNCH INTERVIEW WITH PROJECT MANAGER PLAY | HI-DEF
VIDEO: NARRATED PREVIEW OF ATLAS 5 ASCENT PROFILE PLAY | HI-DEF
VIDEO: ROCKET'S LAUNCH CAMPAIGN HIGHLIGHTS PLAY | HI-DEF
VIDEO: MSL'S LAUNCH CAMPAIGN HIGHLIGHTS PLAY | HI-DEF
VIDEO: SPACECRAFT CLEANROOM TOUR PLAY | HI-DEF

VIDEO: ATLAS ROCKET ROLLS OUT TO LAUNCH PAD PLAY | HI-DEF
VIDEO: TIME-LAPSE VIEWS OF ROCKET ROLLOUT PLAY | HI-DEF

VIDEO: THE PRE-LAUNCH NEWS CONFERENCE PLAY
VIDEO: CURIOSITY ROVER SCIENCE BRIEFING PLAY
VIDEO: LOOKING FOR LIFE IN THE UNIVERSE PLAY
VIDEO: WHAT WE KNOW ABOUT THE RED PLANET PLAY
VIDEO: ROBOTICS AND HUMANS TO MARS TOGETHER PLAY

VIDEO: PREVIEW OF ENTRY, DESCENT AND LANDING PLAY | HI-DEF
VIDEO: PREVIEW OF CURIOSITY ROVER EXPLORING MARS PLAY | HI-DEF
VIDEO: A FLYOVER OF THE GALE CRATER LANDING SITE PLAY | HI-DEF

VIDEO: NUCLEAR GENERATOR HOISTED TO ROVER PLAY | HI-DEF
VIDEO: MARS SCIENCE LAB MOUNTED ATOP ATLAS 5 PLAY | HI-DEF
VIDEO: MOVING MSL TO ATLAS ROCKET HANGAR PLAY | HI-DEF
VIDEO: SPACECRAFT PLACED ABOARD TRANSPORTER PLAY | HI-DEF

VIDEO: APPLYING MISSION LOGOS ON THE FAIRING PLAY | HI-DEF
VIDEO: MSL ENCAPSULATED IN ROCKET'S NOSE CONE PLAY | HI-DEF
VIDEO: FINAL LOOK AT SPACECRAFT BEFORE SHROUDING PLAY | HI-DEF

VIDEO: HEAT SHIELD INSTALLED ONTO SPACECRAFT PLAY | HI-DEF
VIDEO: BEAUTY SHOTS OF SPACECRAFT PACKED UP PLAY | HI-DEF
VIDEO: ATTACHING THE RING-LIKE CRUISE STAGE PLAY | HI-DEF
VIDEO: PARACHUTE-EQUIPPED BACKSHELL INSTALLED PLAY | HI-DEF
VIDEO: SKYCRANE AND CURIOSITY MATED TOGETHER PLAY | HI-DEF

VIDEO: TWO-HALVES OF ROCKET NOSE CONE ARRIVES PLAY | HI-DEF
VIDEO: CENTAUR UPPER STAGE HOISTED ATOP ATLAS PLAY | HI-DEF
VIDEO: FINAL SOLID ROCKET BOOSTER ATTACHED PLAY | HI-DEF
VIDEO: FIRST OF FOUR SOLID BOOSTERS MOUNTED PLAY | HI-DEF
VIDEO: FIRST STAGE ERECTED ON MOBILE LAUNCHER PLAY | HI-DEF
VIDEO: STAGES DRIVEN FROM HARBOR TO THE ASOC PLAY | HI-DEF
VIDEO: ROCKET ARRIVES ABOARD SEA-GOING VESSEL PLAY | HI-DEF

VIDEO: STOWING ROVER'S INSTRUMENTED ROBOT ARM PLAY | HI-DEF
VIDEO: DEPLOYING CURIOSITY'S SIX WHEELS ON EARTH PLAY | HI-DEF
VIDEO: MMRTG PUT BACK INTO STORAGE AT SPACEPORT PLAY | HI-DEF
VIDEO: NUCLEAR GENERATOR FIT-CHECK ON THE ROVER PLAY | HI-DEF
VIDEO: ROVER'S NUCLEAR POWER SOURCE ARRIVES PLAY | HI-DEF
VIDEO: SPIN-TESTING THE RING-LIKE CRUISE STAGE PLAY | HI-DEF

VIDEO: UNCOVERING CURIOSITY ROVER IN CLEANROOM PLAY | HI-DEF
VIDEO: UNVEILING THE ROCKET-POWERED SKYCRANE PLAY | HI-DEF
VIDEO: UNBOXING THE ROVER FROM SHIPPING CRATE PLAY | HI-DEF
VIDEO: ROVER HAULED FROM RUNWAY TO PHSF FACILITY PLAY | HI-DEF
VIDEO: MARS ROVER ARRIVES AT KENNEDY SPACE CENTER PLAY | HI-DEF

VIDEO: DESCENT WEIGHTS INSTALLED ON BACKSHELL PLAY | HI-DEF
VIDEO: SOLAR ARRAY PANELS ATTACHED TO CRUISE RING PLAY | HI-DEF
SUBSCRIBE NOW

John Glenn Mission Patch

Free shipping to U.S. addresses!

The historic first orbital flight by an American is marked by this commemorative patch for John Glenn and Friendship 7.
 U.S. STORE
 WORLDWIDE STORE

Final Shuttle Mission Patch

Free shipping to U.S. addresses!

The crew emblem for the final space shuttle mission is now available in our store. Get this piece of history!
 U.S. STORE
 WORLDWIDE STORE

STS-134 Patch

Free shipping to U.S. addresses!

The final planned flight of space shuttle Endeavour is symbolized in the official embroidered crew patch for STS-134. Available in our store!
 U.S. STORE
 WORLDWIDE STORE

Ares 1-X Patch
The official embroidered patch for the Ares 1-X rocket test flight, is available for purchase.
 U.S. STORE
 WORLDWIDE STORE

Apollo Collage
This beautiful one piece set features the Apollo program emblem surrounded by the individual mission logos.
 U.S. STORE
 WORLDWIDE STORE

Project Orion
The Orion crew exploration vehicle is NASA's first new human spacecraft developed since the space shuttle a quarter-century earlier. The capsule is one of the key elements of returning astronauts to the Moon.
 U.S. STORE


Fallen Heroes Patch Collection
The official patches from Apollo 1, the shuttle Challenger and Columbia crews are available in the store.
 U.S. STORE
 WORLDWIDE STORE

INDEX | PLUS | NEWS ARCHIVE | LAUNCH SCHEDULE
ASTRONOMY NOW | STORE

ADVERTISE

© 2014 Spaceflight Now Inc.