Spaceflight Now Home





The Mission




Mission: Mars Science Lab
Rocket: Atlas 5 (AV-028)
Launch: Nov. 26, 2011 @ 10:02am EST (1502 GMT)
Landing: Aug. 6, 2012 @ 1:32am EDT (0532 GMT)
Site: Base of Mount Sharp in Gale Crater

Mission Status Center

Landing preview story

Sky crane overview

Communications plan

Landing press kit

NASA launch kit

MSL fact sheet


Our launch journal

Launch photo gallery

Rollout photo gallery

Video: HDTV archive

Video: Standard def





Mission Reports




For 12 years, Spaceflight Now has been providing unrivaled coverage of U.S. space launches. Comprehensive reports and voluminous amounts of video are available in our archives.
Space Shuttle
Atlas | Delta | Pegasus
Minotaur | Taurus | Falcon
Titan



NewsAlert



Sign up for our NewsAlert service and have the latest space news e-mailed direct to your desktop.

Enter your e-mail address:

Privacy note: your e-mail address will not be used for any other purpose.



Advertisement






Space Books






Rover finds intriguing rocks indicative of watery past
BY WILLIAM HARWOOD
STORY WRITTEN FOR CBS NEWS "SPACE PLACE" & USED WITH PERMISSION
Posted: January 15, 2013


Bookmark and Share

The Curiosity Mars rover has found intriguing veined rocks just below tilted cross-bedded layers indicating water once flowed and "percolated" through fractured terrain near the landing site in Gale Crater, scientists said Tuesday, additional evidence of a watery past on the red planet.


This view shows the patch of veined, flat-lying rock selected as the first drilling site for NASA's Mars rover Curiosity. Credit: NASA/JPL-Caltech/MSSS
See larger image

 
Taking their time evaluating a surprising variety of scientific targets, mission scientists and engineers now are gearing up for the first tests of a powerful impact drill that will be used to collect samples from inside targeted rocks.

The drill tests are a final major milestone before the rover begins creeping toward Mount Sharp, a towering 3.4-mile-high mound of layered rocks in the center of the broad crater that represents the mission's primary objective.

The base of Mount Sharp is just six miles away as a martian crow would fly. But given the wealth of scientific targets expected along the way, the complexity of the rover and an understandably conservative operational philosophy, it's going to take a while to get there.

"I would guess it would be a good goal for us to try to get there by the end of the calendar year," Project Scientist John Grotzinger told reporters Tuesday. "But this mission is 100 percent discovery driven. If we find some really good stuff, we're going to take the time it requires to do it right."

Curiosity currently is working in an area known as Yellowknife Bay about a quarter of a mile from where the rover landed Aug. 6. Its cameras have beamed back razor-sharp images of fine-grained sedimentary rocks with intriguing veins, nodules and cross bedding that indicate the effects of flowing water.

"This lowest unit that we are at in Yellowknife Bay, the very farthest thing we drove to, turns out to be kind of the jackpot unit here," said Grotzinger. "It is literally shot through with these fractures."

The fractures eventually were filled in by a white material that precipitated out at some later time.

"What these vein fills tell us is water percolated through these rocks, through these fracture networks and then minerals precipitated to form the white material that ChemCam (a rover instrument) has concluded is very likely a calcium sulfate, probably hydrated in origin," Grotzinger said.

"So this is the first time in this mission that we have seen something that is not just an aqueous environment, but one that also results in precipitation of minerals, which is very attractive to us."

Adding to the emerging picture of a once wet environment in Gale Crater, a layer of rocks just above the veined material shows cross bedding, in which multiple thin layers are oriented in different directions.

"What this basically records is the passage of sediment in a moving current that created a small dune and as the dunes migrate they preserve their avalanche faces and those get preserved in the rock record as this cross bedding," Grotzinger said.

The grains that make up the cross-bedded rocks "are too course for the wind to be the current that pushed the grains along," he said. "So we think this formed in water."

Based on orbital photography, scientists already knew Curiosity landed on an alluvial fan where water probably flowed in the distant past. Moving downstream, or east-southeast from the landing site, Curiosity made its way to an area dubbed Glenelg where three different types of rock come together.

Along the way, scientists noted outcrops of conglomerate rock made up of large fragments that once were transported by water. Moving into Glenelg and then into Yellowknife Bay, the rover descended slightly, moving into older terrain, dominated by much finer-grained material, possibly indicative of a less forceful, more tranquil flow.

The cross bedding implies a stream flow "probably a few tens of centimeters per second, maybe a meter per second (2.2 mph) flow, something like that," Grotzinger said. "As far as the depth, it's difficult to know at this point.

"It would certainly be similar to what we were talking about with the conglomerates (closer to the landing site). Maybe just a little farther away, farther down current, or at a time when the current was slowing so it could no longer transport the gravel but it was able to still transport the sand and the finer bits of gravel."

Richard Cook, the project manager of the Mars Science Laboratory mission, said the rover is healthy and that drill tests using the veined rock in Yellowknife Bay should begin soon.

The drill is capable of penetrating rocks to a depth of about two inches. As it grinds into a target, pulverized samples from the interior will be fed into Curiosity's two major laboratory instruments.

The Sample Analysis at Mars instrument, known as SAM, uses a gas chromatograph and two spectrometers to look for signs of organic compounds. The Chemistry and Mineralogy experiment, or CheMin, uses X-ray diffraction to identify minerals in soil and rock samples.

The drill is the last of Curiosity's sampling systems to be put to the test.

"Because of all the interesting things the scientists have been finding, the start of the drilling campaign has been delayed by a few days," Cook said. "But at this point, we are all ready to go to do that.

"We're undoubtedly going to learn a lot about how to drill things on Mars as it's the first time we've ever done that and it'll probably go slowly. But I think by the time we get through this campaign and deliver some sample to the CheMin and SAM, I'm sure scientifically it'll be a great set of measurements."

The primary scientific goals of Curiosity's mission are to look for signs of past or present habitability and to search for the organic compounds that are essential to life as it is known on Earth. Water is a key factor in habitability and there now is little doubt it once flowed in Gale Crater.

But how much water might have been present, and for how long, is not yet known.

Spaceflight Now Plus
Additional coverage for subscribers:
VIDEO: THE MARS SCIENCE LAB FULL LAUNCH EXPERIENCE PLAY | HI-DEF
VIDEO: ATLAS 5 ROCKET LAUNCHES MARS SCIENCE LAB PLAY | HI-DEF
VIDEO: ONBOARD CAMERA VIEW OF NOSE CONE JETTISON PLAY | HI-DEF
VIDEO: ONBOARD CAMERA VIEW OF THE STAGING EVENT PLAY | HI-DEF
VIDEO: ONBOARD VIEW OF ROCKET RELEASING MSL PLAY
VIDEO: LAUNCH DECLARED A SUCCESS PLAY

VIDEO: LAUNCH REPLAYS: OUR VIEW OF LIFTOFF PLAY | HI-DEF
VIDEO: LAUNCH REPLAYS: VAB ROOF PLAY | HI-DEF
VIDEO: LAUNCH REPLAYS: PATRICK AFB PLAY | HI-DEF
VIDEO: LAUNCH REPLAYS: SOUTH OF THE PAD PLAY | HI-DEF
VIDEO: LAUNCH REPLAYS: THE BEACH TRACKER PLAY | HI-DEF
VIDEO: LAUNCH REPLAYS: SHUTTLE PAD CAMERA PLAY | HI-DEF
VIDEO: LAUNCH REPLAYS: SHUTTLE WATER TOWER PLAY | HI-DEF
VIDEO: LAUNCH REPLAYS: TRACKER WEST OF THE PAD PLAY | HI-DEF
VIDEO: LAUNCH REPLAYS: CLOSE-UP ON UMBILICALS PLAY | HI-DEF
VIDEO: LAUNCH REPLAYS: COMPLEX 41 VIF PLAY | HI-DEF
VIDEO: LAUNCH REPLAYS: THE PRESS SITE PLAY | HI-DEF

VIDEO: PRE-LAUNCH INTERVIEW WITH PROJECT MANAGER PLAY | HI-DEF
VIDEO: NARRATED PREVIEW OF ATLAS 5 ASCENT PROFILE PLAY | HI-DEF
VIDEO: ROCKET'S LAUNCH CAMPAIGN HIGHLIGHTS PLAY | HI-DEF
VIDEO: MSL'S LAUNCH CAMPAIGN HIGHLIGHTS PLAY | HI-DEF
VIDEO: SPACECRAFT CLEANROOM TOUR PLAY | HI-DEF

VIDEO: ATLAS ROCKET ROLLS OUT TO LAUNCH PAD PLAY | HI-DEF
VIDEO: TIME-LAPSE VIEWS OF ROCKET ROLLOUT PLAY | HI-DEF

VIDEO: THE PRE-LAUNCH NEWS CONFERENCE PLAY
VIDEO: CURIOSITY ROVER SCIENCE BRIEFING PLAY
VIDEO: LOOKING FOR LIFE IN THE UNIVERSE PLAY
VIDEO: WHAT WE KNOW ABOUT THE RED PLANET PLAY
VIDEO: ROBOTICS AND HUMANS TO MARS TOGETHER PLAY

VIDEO: PREVIEW OF ENTRY, DESCENT AND LANDING PLAY | HI-DEF
VIDEO: PREVIEW OF CURIOSITY ROVER EXPLORING MARS PLAY | HI-DEF
VIDEO: A FLYOVER OF THE GALE CRATER LANDING SITE PLAY | HI-DEF

VIDEO: NUCLEAR GENERATOR HOISTED TO ROVER PLAY | HI-DEF
VIDEO: MARS SCIENCE LAB MOUNTED ATOP ATLAS 5 PLAY | HI-DEF
VIDEO: MOVING MSL TO ATLAS ROCKET HANGAR PLAY | HI-DEF
VIDEO: SPACECRAFT PLACED ABOARD TRANSPORTER PLAY | HI-DEF

VIDEO: APPLYING MISSION LOGOS ON THE FAIRING PLAY | HI-DEF
VIDEO: MSL ENCAPSULATED IN ROCKET'S NOSE CONE PLAY | HI-DEF
VIDEO: FINAL LOOK AT SPACECRAFT BEFORE SHROUDING PLAY | HI-DEF

VIDEO: HEAT SHIELD INSTALLED ONTO SPACECRAFT PLAY | HI-DEF
VIDEO: BEAUTY SHOTS OF SPACECRAFT PACKED UP PLAY | HI-DEF
VIDEO: ATTACHING THE RING-LIKE CRUISE STAGE PLAY | HI-DEF
VIDEO: PARACHUTE-EQUIPPED BACKSHELL INSTALLED PLAY | HI-DEF
VIDEO: SKYCRANE AND CURIOSITY MATED TOGETHER PLAY | HI-DEF

VIDEO: TWO-HALVES OF ROCKET NOSE CONE ARRIVES PLAY | HI-DEF
VIDEO: CENTAUR UPPER STAGE HOISTED ATOP ATLAS PLAY | HI-DEF
VIDEO: FINAL SOLID ROCKET BOOSTER ATTACHED PLAY | HI-DEF
VIDEO: FIRST OF FOUR SOLID BOOSTERS MOUNTED PLAY | HI-DEF
VIDEO: FIRST STAGE ERECTED ON MOBILE LAUNCHER PLAY | HI-DEF
VIDEO: STAGES DRIVEN FROM HARBOR TO THE ASOC PLAY | HI-DEF
VIDEO: ROCKET ARRIVES ABOARD SEA-GOING VESSEL PLAY | HI-DEF

VIDEO: STOWING ROVER'S INSTRUMENTED ROBOT ARM PLAY | HI-DEF
VIDEO: DEPLOYING CURIOSITY'S SIX WHEELS ON EARTH PLAY | HI-DEF
VIDEO: MMRTG PUT BACK INTO STORAGE AT SPACEPORT PLAY | HI-DEF
VIDEO: NUCLEAR GENERATOR FIT-CHECK ON THE ROVER PLAY | HI-DEF
VIDEO: ROVER'S NUCLEAR POWER SOURCE ARRIVES PLAY | HI-DEF
VIDEO: SPIN-TESTING THE RING-LIKE CRUISE STAGE PLAY | HI-DEF

VIDEO: UNCOVERING CURIOSITY ROVER IN CLEANROOM PLAY | HI-DEF
VIDEO: UNVEILING THE ROCKET-POWERED SKYCRANE PLAY | HI-DEF
VIDEO: UNBOXING THE ROVER FROM SHIPPING CRATE PLAY | HI-DEF
VIDEO: ROVER HAULED FROM RUNWAY TO PHSF FACILITY PLAY | HI-DEF
VIDEO: MARS ROVER ARRIVES AT KENNEDY SPACE CENTER PLAY | HI-DEF

VIDEO: DESCENT WEIGHTS INSTALLED ON BACKSHELL PLAY | HI-DEF
VIDEO: SOLAR ARRAY PANELS ATTACHED TO CRUISE RING PLAY | HI-DEF
SUBSCRIBE NOW

John Glenn Mission Patch

Free shipping to U.S. addresses!

The historic first orbital flight by an American is marked by this commemorative patch for John Glenn and Friendship 7.
 U.S. STORE
 WORLDWIDE STORE

STS-134 Patch

Free shipping to U.S. addresses!

The final planned flight of space shuttle Endeavour is symbolized in the official embroidered crew patch for STS-134. Available in our store!
 U.S. STORE
 WORLDWIDE STORE

Final Shuttle Mission Patch

Free shipping to U.S. addresses!

The crew emblem for the final space shuttle mission is now available in our store. Get this piece of history!
 U.S. STORE
 WORLDWIDE STORE

Apollo Collage
This beautiful one piece set features the Apollo program emblem surrounded by the individual mission logos.
 U.S. STORE

STS-133 Patch

Free shipping to U.S. addresses!

The final planned flight of space shuttle Discovery is symbolized in the official embroidered crew patch for STS-133. Available in our store!
 U.S. STORE
 WORLDWIDE STORE

Anniversary Shuttle Patch

Free shipping to U.S. addresses!

This embroidered patch commemorates the 30th anniversary of the Space Shuttle Program. The design features the space shuttle Columbia's historic maiden flight of April 12, 1981.
 U.S. STORE
 WORLDWIDE STORE

Mercury anniversary

Free shipping to U.S. addresses!


Celebrate the 50th anniversary of Alan Shephard's historic Mercury mission with this collectors' item, the official commemorative embroidered patch.
 U.S. STORE
 WORLDWIDE STORE

INDEX | PLUS | NEWS ARCHIVE | LAUNCH SCHEDULE
ASTRONOMY NOW | STORE

ADVERTISE

© 2014 Spaceflight Now Inc.