Spaceflight Now Home




Spaceflight Now +



Premium video content for our Spaceflight Now Plus subscribers.

Post-scrub briefing
This post-scrub news conference occurred at 4:30 p.m. EDT on Wednesday, July 13 following postponement of Discovery's launch. (31min 30sec file)

 Play video:
   Dial-up| Broadband

Discovery launch delay
Launch of space shuttle Discovery on the return to flight mission was scrubbed because of trouble with engine cutoff sensors in the external tank. (4min 45sec file)
 Play video

To the pad
The five-man, two-woman astronaut crew departs the Operations and Checkout Building to board the AstroVan for the ride to launch pad 39B. (3min 01sec file)
 Play video

Suiting up
The astronauts -- in two groups -- don their launch and entry partial pressure suits before heading to the pad.
 Part 1 | Part 2

Pre-launch snack
Discovery's seven astronauts gather around the dining room table in crew quarters for a pre-launch snack before suiting up and heading to the pad. (1min 53sec file)
 Play video

Service tower rollback
Pad 39B's Rotating Service Structure is retracted from around shuttle Discovery Tuesday night in preparation for the first launch attempt. (4min 36sec file)
 Play video

Become a subscriber
More video



NewsAlert



Sign up for our NewsAlert service and have the latest news in astronomy and space e-mailed direct to your desktop.

Enter your e-mail address:

Privacy note: your e-mail address will not be used for any other purpose.



Comet Tempel 1 went back to sleep
EUROPEAN SOUTHERN OBSERVATORY NEWS RELEASE
Posted: July 14, 2005

Ten days after part of the Deep Impact spacecraft plunged onto Comet Tempel 1 with the aim to create a crater and expose pristine material from beneath the surface, astronomers are back in the European Southern Observatory Offices in Santiago, after more than a week of observing at the ESO La Silla Paranal Observatory. In this unprecedented observing campaign - among the most ambitious ever conducted by a single observatory - the astronomers have collected a large amount of invaluable data on this comet.


This photo shows the evolution of Comet Tempel 1 as observed with the FORS2 instrument on Antu. Credit: ESO
 
The astronomers have now started the lengthy process of data reduction and analysis. Being all together in a single place, and in close contacts with the space mission’ scientific team, they will try to assemble a clear picture of the comet and of the impact.

The ESO observations were part of a worldwide campaign to observe this unique experiment. During the campaign, ESO was connected by phone, email, and videoconference with colleagues in all major observatories worldwide, and data were freely exchanged between the different groups. This unique collaborative spirit provides astronomers with data taken almost around the clock during several days and this, with the largest variety of instruments, making the Deep Impact observing campaign one of the most successful of its kind, and thereby, ensuring the greatest scientific outcome.

From the current analysis, it appears most likely that the impactor did not create a large new zone of activity and may have failed to liberate a large quantity of pristine material from beneath the surface.

The images obtained at the VLT show that after the impact, the morphology of Comet Tempel 1 had changed, with the appearance of a new plume-like structure, produced by matter being ejected with a speed of about 700 to 1000 km/h. This structure, however, diffused away in the following days, being more and more diluted and less visible, the comet taking again the appearance it had before the impact. Further images obtained with, among others, the adaptive optics NACO instrument on the Very Large Telescope, showed the same jets that were visible prior to impact, demonstrating that the comet activity survived widely unaffected the spacecraft crash.

The study of the gas in Comet Tempel 1, made with UVES on Kueyen (UT2 of the VLT), reveals a small flux increase the first night following the impact. At that time, more than 17 hours after the impact, the ejected matter was fading away but still measurable thanks to the large light collecting power of the VLT. The data accumulated during 10 nights around the impact have provided the astronomers with the best ever time series of optical spectra of a Jupiter Family comet, with a total of more than 40 hours of exposure time. This unique data set has already allowed the astronomers to characterize the normal gas activity of the comet and also to detect, to their own surprise, an active region. This active region is not related to the impact as it was also detected in data collected in June. It shows up about every 41 hours, the rotation period of the comet nucleus determined by the Deep Impact spacecraft. Exciting measurements of the detailed chemical composition (such as the isotopic ratios) of the material released by the impact as well as the one coming from that source will be performed by the astronomers in the next weeks and months.

Further spectropolarimetric observations with FORS1 have confirmed the surface of the comet to be rather evolved - as expected - but more importantly, that the dust is not coming from beneath the surface. These data constitute another unique high-quality data set on comets.

Comet Tempel 1 may thus be back to sleep but work only starts for the astronomers.

On July 4, 2005, the NASA Deep Impact spacecraft launched a 360 kg impactor onto Comet 9P/Tempel 1. This experiment is seen by many as the first opportunity to study the crust and the interior of a comet, revealing new information on the early phases of the Solar System. ESO actively participated in pre- and post-impact observations. Apart from a long-term monitoring of the comet, for two days before and six days after, all major ESO telescopes - i.e. the four Unit Telescopes of the Very Large Telescope Array at Paranal, as well as the 3.6m, 3.5m NTT and the 2.2m ESO/MPG telescopes at La Silla - have been observing Comet 9P/Tempel 1, in a coordinated fashion and in very close collaboration with the space mission' scientific team. The simultaneous use of all ESO telescopes with all together 10 instruments has an enormous potential, since it allows for observation of the comet at different wavelengths in the visible and infrared by imaging, spectroscopy and polarimetry. Such multiplexing capabilities of the instrumentation do not exist at any other observatory in the world.

Spaceflight Now Plus
Additional coverage for subscribers:
VIDEO: IMPACT MOVIES FROM MOTHERSHIP (NARRATED) PLAY
VIDEO: RIDE ALONG AS THE IMPACTOR SLAMS INTO TARGET PLAY
VIDEO: LEAD SCIENTISTS PRESENTS LATEST RESULTS PLAY
VIDEO: MONDAY'S AFTERNOON NEWS BRIEFING DIAL-UP | BROADBAND
AUDIO: LISTEN TO NEWS CONFERENCE MP3

VIDEO: DEEP IMPACT SMASHES INTO COMET PLAY
VIDEO: NARRATION OF IMPACTOR'S FINAL IMAGES PLAY
VIDEO: IMPACT PICTURES EXPLAINED BY COMET EXPERT PLAY
VIDEO: POST-IMPACT NEWS CONFERENCE DIAL-UP | BROADBAND
AUDIO: LISTEN TO POST-IMPACT NEWS CONFERENCE MP3

VIDEO: "DEEP IMPACT: THE MISSION" MOVIE PLAY
VIDEO: "DIGGING OUT THE SCIENCE" PLAY
VIDEO: RECAP OF IMPACTOR DEPLOY ACTIVITIES PLAY
VIDEO: PREVIEW OF THE ENCOUNTER TIMELINE PLAY
VIDEO: LEARN MORE ABOUT THE SPACECRAFT PLAY
VIDEO: SCIENCE DATA FROM COMET OUTBURSTS PLAY
VIDEO: SUNDAY MIDDAY STATUS REPORT DIAL-UP | BROADBAND 1 & 2
VIDEO: MISSION ENGINEERING BRIEFING DIAL-UP | BROADBAND
VIDEO: FRIDAY'S SCIENCE CONFERENCE DIAL-UP | BROADBAND
MORE: DEEP IMPACT VIDEO COLLECTION!
SUBSCRIBE NOW

MISSION STATUS CENTER